Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 45(15): 3719-3725, 2020 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-32893564

RESUMO

The aim of this paper was to investigate the effect of Schizonepetae Herba and Saposhnikoviae Radix(wind medicine) on the expression of AQP4 and AQP8 in colonic mucosa in rats with ulcerative colitis(UC). A total of 35 healthy SD male rats were randomly divided into normal group(gavaged with normal saline), DSS model group, as well as low, middle, and high dose wind medicine groups(Schizonepeta and Saposhnikovia 1∶1, gavaged at dosages of 6, 12, and 24 g·kg~(-1)·d~(-1)), with 7 in each group. UC rat model was established by free drinking of 3% dextran sulphate sodium(DSS) solution for 10 days. At the end of the 10 th day after the treatment, mice were put to death to collect colonic mucosa. The length of colon was measured; the colonic mucosal injury index(CMDI) and pathological changes of colon were observed. ELISA method was used for measuring the content of serum IL-1, IL-8, and immunohistochemical method was used to measure AQP4, AQP8 protein expressions in colon mucosa. The expressions of AQP4, AQP8 mRNA were measured by Real-time PCR. As compared with the normal group, the length of colon tissue was significantly reduced(P<0.01), CMDI scores and pathological scores were significantly increased(P<0.01), the levels of serum IL-1 and IL-8 were significantly increased(P<0.05) in model group; the immunohistochemical results showed that the protein expressions of AQP4, AQP8 were lower; the color was light yellow or brown; AQP4, AQP8 mRNA expressions in colon mucosa were significantly decreased in model group(P<0.01). CMDI scores, pathological scores, and the levels of serum IL-1, IL-8 in high, middle, low dose wind medicine groups were obvious lower than those in the model group(P<0.01 or P<0.05); the protein expressions of AQP4, AQP8 were higher; the color was chocolate brown or dark brown; the length of colon tissue, and the expressions of AQP4, AQP8 mRNA were obvious higher in wind medicine groups(P<0.01 or P<0.05). Schizonepetae Herba and Saposhnikoviae Radix could significantly improve the symptoms and histopathology of UC model rats and accelerate the intestinal mucosal healing. The mechanism may be related with up-regulating the expression level of AQP4 and AQP8 in colonic mucosa.


Assuntos
Apiaceae , Colite Ulcerativa , Animais , Aquaporina 4 , Colo , Mucosa Intestinal , Masculino , Camundongos , Raízes de Plantas , Ratos
2.
Zhongguo Zhong Yao Za Zhi ; 44(24): 5465-5472, 2019 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-32237396

RESUMO

The aim of this paper was to screen the active targets of Schizonepetae Herba and Saposhnikoviae Radix in the treatment of ulcerative colitis by means of network pharmacology,and to investigate their mechanism of action. The effective components of Schizonepetae Herba and Saposhnikoviae Radix were screened out by traditional Chinese medicine systematic pharmacological( TCMSP)database,with oral bioavilability( OB) ≥30% and drug-like( DL) ≥18% selected as the thresholds. Target PPI network was built between the main components and their corresponding targets. One hundred and eighty-two human genes corresponding to the medicine target sites were obtained from Uniprot database; 3 874 genes corresponding to ulcerative colitis were obtained from Genecard database.A total of 115 intersection genes were screened from disease genes and medicine genes,and the PPI interaction analysis was conducted by using String tool. Disease-target PPI network was drawn by using Cytoscape software,and component-target-disease network was constructed. One hundred and eight nodes and 1 882 connections were found,and then Cytoscape software was used to merge the networks and filter the core network for gene GO function analysis and KEGG pathway enrichment analysis. The mechanism of Schizonepetae Herba and Saposhnikoviae Radix was then verified by animal experiment. Gene GO functional analysis suggested that biological process,molecular functions and cell components were involved,and it was found that ulcerative colitis might be related to transcription factor activity,and cytokine receptor binding,etc. Gene KEGG pathway enrichment analysis showed that the mechanism of ulcerative colitis might be associated with TNF and Toll-like receptors( TLRs) signaling pathway-mediated cytoinflammatory factors interleukin-1( IL-1) and interleukin-6( IL6). The possible mechanism of the effective components of Schizonepetae Herba and Saposhnikoviae Radix in treating ulcerative colitis might be related to intervening the cytokine receptor binding of TNF and TLRs signaling pathways,reducing the transcription of nuclear factor-kappaB( NF-κB),and inhibiting the secretion of intestinal inflammatory factors IL-1 and IL-6.


Assuntos
Colite Ulcerativa/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Mapeamento de Interação de Proteínas , Animais , Apiaceae/química , Bases de Dados Genéticas , Humanos , Interleucinas/metabolismo , Lamiaceae/química , Medicina Tradicional Chinesa , Fitoterapia , Raízes de Plantas/química , Transdução de Sinais , Software , Receptores Toll-Like/metabolismo
3.
J Neurooncol ; 127(2): 391-400, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26746692

RESUMO

The purpose of this pilot study was to determine whether blood-borne microvesicles from newly diagnosed glioblastoma patients could be used as biomarkers. We collected 2.8 mL blood from 16 post-operative patients at the time that they were being simulated for chemoradiation therapy (radiation with concurrent temozolomide). Two additional samples were collected during chemoradiation therapy and a final sample was collected at the end of chemoradiation therapy. Patients continued with the therapy suggested by their physicians, based on tumor conference consensus and were followed for recurrence and overall survival. Microvesicles were isolated using serial centrifugation and stained for surface markers (Annexin V for phosphotidyl serine, CD41 for platelets, anti-EGFR for tumor cells, and CD235 for red blood cells). Flow cytometry analysis was performed. Our findings provide initial evidence that increases in Annexin V positive microvesicle levels during chemoradiation therapy are associated with earlier recurrence and shorter overall survival in newly diagnosed glioblastoma patients. The effect is dramatic, with over a four-fold increase in the hazard ratio for an individual at the 75th versus the 25th percentile. Moreover the pattern of Annexin V positive microvesicles remain significant after adjustment for confounding clinical variables that have previously been shown to be prognostic for recurrence and survival. Inclusion of neutrophil levels at the start of chemoradiation therapy in the model yielded the largest attenuation of the observed association. Further studies will be needed to verify and further investigate the association between these two entities.


Assuntos
Biomarcadores Tumorais/sangue , Neoplasias Encefálicas/patologia , Micropartículas Derivadas de Células/patologia , Glioblastoma/patologia , Recidiva Local de Neoplasia/patologia , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/terapia , Quimiorradioterapia , Feminino , Seguimentos , Glioblastoma/diagnóstico , Glioblastoma/mortalidade , Glioblastoma/terapia , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/diagnóstico , Recidiva Local de Neoplasia/mortalidade , Recidiva Local de Neoplasia/terapia , Estadiamento de Neoplasias , Prognóstico , Taxa de Sobrevida
4.
PLoS One ; 10(7): e0133895, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26208323

RESUMO

Diagnostic and prognostic indicators are key components to achieve the goal of personalized cancer therapy. Two distinct approaches to this goal include predicting response by genetic analysis and direct testing of possible therapies using cultures derived from biopsy specimens. Optimally, the latter method requires a rapid assessment, but growing xenograft tumors or developing patient-derived cell lines can involve a great deal of time and expense. Furthermore, tumor cells have much different responses when grown in 2D versus 3D tissue environments. Using a modification of existing methods, we show that it is possible to make tumor-fragment (TF) spheroids in only 2-3 days. TF spheroids appear to closely model characteristics of the original tumor and may be used to assess critical therapy-modulating features of the microenvironment such as hypoxia. A similar method allows the reproducible development of spheroids from mixed tumor cells and fibroblasts (mixed-cell spheroids). Prior literature reports have shown highly variable development and properties of mixed-cell spheroids and this has hampered the detailed study of how individual tumor-cell components interact. In this study, we illustrate this approach and describe similarities and differences using two tumor models (U87 glioma and SQ20B squamous-cell carcinoma) with supporting data from additional cell lines. We show that U87 and SQ20B spheroids predict a key microenvironmental factor in tumors (hypoxia) and that SQ20B cells and spheroids generate similar numbers of microvesicles. We also present pilot data for miRNA expression under conditions of cells, tumors, and TF spheroids.


Assuntos
Neoplasias/genética , Neoplasias/patologia , Esferoides Celulares , Biomarcadores , Linhagem Celular Tumoral , Fibroblastos , Humanos , MicroRNAs , Neovascularização Patológica , Células Estromais , Células Tumorais Cultivadas , Microambiente Tumoral
5.
Transl Oncol ; 7(6): 752-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25500085

RESUMO

UNLABELLED: The standard of care for glioblastoma (GB) is surgery followed by concurrent radiation therapy (RT) and temozolomide (TMZ) and then adjuvant TMZ. This regime is associated with increased survival but also increased occurrence of equivocal imaging findings, e.g., tumor progression (TP) versus treatment effect (TE), which is also referred to as pseudoprogression (PsP). Equivocal findings make decisions regarding further treatment difficult and often delayed. Because none of the current imaging assays have proven sensitive and specific for differentiation of TP versus TE/PsP, we investigated whether blood-derived microvesicles (MVs) would be a relevant assay. METHODS: 2.8 ml of citrated blood was collected from patients with GB at the time of their RT simulation, at the end of chemoradiation therapy (CRT), and multiple times following treatment. MVs were collected following multiple centrifugations (300g, 2500g, and 15,000g). The pellet from the final spin was analyzed using flow cytometry. A diameter of approximately 300 nm or greater and Pacific Blue-labeled Annexin V positivity were used to identify the MVs reported herein. RESULTS: We analyzed 19 blood samples from 11 patients with GB. MV counts in the patients with stable disease or TE/PsP were significantly lower than patients who developed TP (P = .014). CONCLUSION: These preliminary data suggest that blood analysis for MVs from GB patients receiving CRT may be useful to distinguish TE/PsP from TP. MVs may add clarity to standard imaging for decision making in patients with equivocal imaging findings.

6.
Tumor Microenviron Ther ; 1: 1-13, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25436211

RESUMO

Classical descriptions of tumor physiology suggest two origins for tumor hypoxia; steady-state (diffusion-limited) hypoxia and cycling (perfusion-modulated) hypoxia. Both origins, primarily studied and characterized in murine models, predict relatively small, isolated foci or thin shells of hypoxic tissue interspersed with contrasting oxic tissue. These foci or shells would not be expected to scale with overall tumor size since the oxygen diffusion distance (determined by oxygen permeability and tissue oxygen consumption rate) is not known to vary dramatically from tumor to tumor. We have identified much larger (macroscopic) regions of hypoxia in rat gliosarcoma tumors and in larger human tumors (notably sarcomas and high-grade glial tumors), as indicated by biochemical binding of the hypoxia marker, EF5. Thus, we considered an alternative cause of tumor hypoxia related to a phenomenon first observed in window-chamber tumor models: namely longitudinal arteriole gradients. Although longitudinal arteriole gradients, as originally described, are also microscopic in nature, it is possible for them to scale with tumor size if tumor blood flow is organized in an appropriate manner. In this organization, inflowing blood would arise from relatively well-oxygenated sources and would branch and then coalesce to poorly-oxygenated outflowing blood over distances much larger than the length of conventional arterioles (multi-millimeter scale). This novel concept differs from the common characterization of tumor blood flow as disorganized and/or chaotic. The organization of blood flow to produce extended longitudinal gradients and macroscopic regional hypoxia has many important implications for the imaging, therapy and biological properties of tumors. Herein, we report the first experimental evidence for such blood flow, using rat 9L gliosarcoma tumors grown on the epigastric artery/vein pair.

7.
J Pharm (Cairo) ; 20132013.
Artigo em Inglês | MEDLINE | ID: mdl-26167335

RESUMO

Traditional anticancer chemotherapy often displays toxic side effects, poor bioavailability, and a low therapeutic index. Targeting and controlled release of a chemotherapeutic agent can increase drug bioavailability, mitigate undesirable side effects, and increase the therapeutic index. Here we report a polymersome-based system to deliver gemcitabine to Panc-1 cells in vitro. The polymersomes were self-assembled from a biocompatible and completely biodegradable polymer, poly(ethylene oxide)-poly(caprolactone), PEO-PCL. We showed that we can encapsulate gemcitabine within stable 200 nm vesicles with a 10% loading efficiency. These vesicles displayed a controlled release of gemcitabine with 60% release after 2 days at physiological pH. Upon treatment of Panc-1 cells in vitro, vesicles were internalized as verified with fluorescently labeled polymersomes. Clonogenic assays to determine cell survival were performed by treating Panc-1 cells with varying concentrations of unencapsulated gemcitabine (FreeGem) and polymersome-encapsulated gemcitabine (PolyGem) for 48 hours. 1 µM PolyGem was equivalent in tumor cell toxicity to 1 µM FreeGem, with a one log cell kill observed. These studies suggest that further investigation on polymersome-based drug formulations is warranted for chemotherapy of pancreatic cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...