Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 338
Filtrar
1.
Discov Oncol ; 15(1): 259, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38960980

RESUMO

Liver cancer is the sixth most commonly diagnosed cancer and the third leading cause of cancer death in the world, and hepatocellular carcinoma (HCC) is the most common form of liver cancer. More than half of the HCC patients are diagnosed at an advanced stage and often require systemic therapy. Dysregulation of the activity of receptor tyrosine kinases (RTKs) is involved in the development and progress of HCC, RTKs are therefore the potential targets for systemic therapy of advanced HCC (aHCC). Currently, a total of six small molecule tyrosine kinase inhibitors (TKIs) have been approved for aHCC, including first-line sorafenib, lenvatinib, and donafenib, and second-line regorafenib, cabozantinib, and apatinib. These TKIs improved patients survival, which are associated with disease stage, etiology, liver function, tumor burden, baseline levels of alpha-fetoprotein, and treatment history. This review focuses on the clinical outcomes of these TKIs in key clinical trials, retrospective and real-world studies and discusses the future perspectives of TKIs for aHCC, with an aim to provide up-to-date evidence for decision-making in the treatment of aHCC.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38969601

RESUMO

The gut microbiome can play a crucial role in hepatocellular carcinoma (HCC) progression through the enterohepatic circulation, primarily acting via metabolic reprogramming and alterations in the hepatic immune microenvironment triggered by microbe-associated molecular patterns (MAMPs), metabolites, and fungi. In addition, the gut microbiome shows potential as a biomarker for early HCC diagnosis and for assessing the efficacy of immunotherapy in unresectable HCC. This review examines how gut microbiota dysbiosis, with varied functional profiles, contributes to HCCs of different etiologies. We discuss therapeutic strategies to modulate the gut microbiome including diets, antibiotics, probiotics, fecal microbiota transplantation, and nano-delivery systems, and underscore their potential as an adjunctive treatment modality for HCC.

3.
EBioMedicine ; 105: 105200, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38876044

RESUMO

Nanoparticles have shown great potential for tumor targeting delivery via enhanced permeability and retention effect. However, the tumor mechanical microenvironment, characterized by dense extracellular matrix (ECM), high tumor stiffness and solid stress, leads to only 0.7% of administered dose accumulating in solid tumors and even fewer (∼0.0014%) reaching tumor cells, limiting the therapeutic efficacy of nanoparticles. Furthermore, the tumor mechanical microenvironment can regulate tumor cell stemness, promote tumor invasion, metastasis and reduce treatment efficacy. In this review, methods detecting the mechanical are introduced. Strategies for modulating the mechanical microenvironment including elimination of dense ECM by physical, chemical and biological methods, disruption of ECM formation, depletion or inhibition of cancer-associated fibroblasts, are then summarized. Finally, prospects and challenges for further clinical applications of mechano-modulating strategies to enhance the therapeutic efficacy of nanomedicines are discussed. This review may provide guidance for the rational design and application of nanoparticles in clinical settings.

4.
Biomaterials ; 311: 122673, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38897030

RESUMO

The adaptive antioxidant systems of tumor cells, predominantly glutathione (GSH) and thioredoxin (TRX) networks, severely impair photodynamic therapy (PDT) potency and anti-tumor immune responses. Here, a multistage redox homeostasis nanodisruptor (Phy@HES-IR), integrated by hydroxyethyl starch (HES)-new indocyanine green (IR820) conjugates with physcion (Phy), an inhibitor of the pentose phosphate pathway (PPP), is rationally designed to achieve PDT primed cancer immunotherapy. In this nanodisruptor, Phy effectively depletes intracellular GSH of tumor cells by inhibiting 6-phosphogluconate dehydrogenase (6PGD) activity. Concurrently, it is observed for the first time that the modified IR820-NH2 molecule not only exerts PDT action but also interferes with TRX antioxidant pathway by inhibiting thioredoxin oxidase (TRXR) activity. The simultaneous weakening of two major antioxidant pathways of tumor cells is favorable to maximize the PDT efficacy induced by HES-IR conjugates. By virtue of the excellent protecting ability of the plasma expander HES, Phy@HES-IR can remain stable in the blood circulation and efficiently enrich in the tumor region. Consequently, PDT and metabolic modulation synergistically induced immunogenic cell death, which not only suppressed primary tumors but also stimulated potent anti-tumor immunity to inhibit the growth of distant tumors in 4T1 tumor-bearing mice.

6.
Adv Sci (Weinh) ; 11(26): e2306730, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38704687

RESUMO

Aberrant tumor mechanical microenvironment (TMME), featured with overactivated cancer-associated fibroblasts (CAFs) and excessive extracellular matrix (ECM), severely restricts penetration and accumulation of cancer nanomedicines, while mild-hyperthermia photothermal therapy (mild-PTT) has been developed to modulate TMME. However, photothermal agents also encounter the barriers established by TMME, manifesting in limited penetration and heterogeneous distribution across tumor tissues and ending with attenuated efficiency in TMME regulation. Herein, it is leveraged indocyanine green (ICG)-loaded soft nanogels with outstanding deformability, for efficient tumor penetration and uniform distribution, in combination with mild-PTT to achieve potent TMME regulation by inhibiting CAFs and degrading ECM. As a result, doxorubicin (DOX)-loaded stiff nanogels gain greater benefits in tumor penetration and antitumor efficacy than soft counterparts from softness-mediated mild-PTT. This study reveals the crucial role of nanomedicine mechanical properties in tumor distribution and provides a novel strategy for overcoming the barriers of solid tumors with soft deformable nanogels.


Assuntos
Doxorrubicina , Hipertermia Induzida , Verde de Indocianina , Nanomedicina , Microambiente Tumoral , Nanomedicina/métodos , Animais , Camundongos , Microambiente Tumoral/efeitos dos fármacos , Hipertermia Induzida/métodos , Doxorrubicina/administração & dosagem , Verde de Indocianina/administração & dosagem , Nanogéis , Humanos , Terapia Fototérmica/métodos , Modelos Animais de Doenças , Neoplasias/terapia , Linhagem Celular Tumoral , Fibroblastos Associados a Câncer/metabolismo
7.
Research (Wash D C) ; 7: 0335, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38766644

RESUMO

Cuproptosis-based cancer nanomedicine has received widespread attention recently. However, cuproptosis nanomedicine against pancreatic ductal adenocarcinoma (PDAC) is severely limited by cancer stem cells (CSCs), which reside in the hypoxic stroma and adopt glycolysis metabolism accordingly to resist cuproptosis-induced mitochondria damage. Here, we leverage hyperbaric oxygen (HBO) to regulate CSC metabolism by overcoming tumor hypoxia and to augment CSC elimination efficacy of polydopamine and hydroxyethyl starch stabilized copper-diethyldithiocarbamate nanoparticles (CuET@PH NPs). Mechanistically, while HBO and CuET@PH NPs inhibit glycolysis and oxidative phosphorylation, respectively, the combination of HBO and CuET@PH NPs potently suppresses energy metabolism of CSCs, thereby achieving robust tumor inhibition of PDAC and elongating mice survival importantly. This study reveals novel insights into the effects of cuproptosis nanomedicine on PDAC CSC metabolism and suggests that the combination of HBO with cuproptosis nanomedicine holds significant clinical translation potential for PDAC patients.

8.
Biomaterials ; 306: 122497, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38310827

RESUMO

High reactive oxygen species (ROS) levels provide a therapeutic opportunity to eradicate cancer stem cells (CSCs), a population of cells responsible for tumorigenesis, progression, metastasis, and recurrence. However, enhanced antioxidant systems in this population of cells attenuate ROS-inducing therapies. Here, we developed a nanoparticle-assisted combination therapy to eliminate CSCs by employing photodynamic therapy (PDT) to yield ROS while disrupting ROS defense with glutaminolysis inhibition. Specifically, we leveraged an oleic acid-hemicyanine conjugate (CyOA) as photosensitizer, a new entity molecule HYL001 as glutaminolysis inhibitor, and a biocompatible folic acid-hydroxyethyl starch conjugate (FA-HES) as amphiphilic surfactant to construct cellular and mitochondrial hierarchical targeting nanomedicine (COHF NPs). COHF NPs inhibited glutaminolysis to reduce intracellular ROS scavengers, including glutathione (GSH) and nicotinamide adenine dinucleotide phosphate (NADPH), and to blunt oxidative phosphorylation (OXPHOS) for oxygen-conserved PDT. Compared to COLF NPs without glutaminolysis inhibitor, COHF NPs exhibited higher phototoxicity to breast cancer stem cells (BCSCs) both in vitro and in vivo. More importantly, we corroborated that marketed glutaminolysis inhibitors, such as CB839 and V9302, augment the clinically used photosensitizer (Hiporfin) for BCSCs elimination. This study develops a potent CSCs targeting strategy by combining glutaminolysis inhibition with PDT and provides significant implications for cancer therapy.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/química , Espécies Reativas de Oxigênio , Terapia Combinada , Glutationa , Linhagem Celular Tumoral , Nanopartículas/química , Neoplasias/tratamento farmacológico
9.
ACS Nano ; 18(2): 1357-1370, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38164903

RESUMO

Gram-negative bacteria can naturally produce nanosized spherical outer membrane vesicles (OMVs) with a lipid bilayer membrane, possessing immunostimulatory capabilities to be potentially applied in tumor therapy. However, the systemic toxicity induced by pathogen-associated molecular patterns (PAMPs) of OMVs is the main obstacle for their clinical translation. Herein, melanin-loaded OMVs were produced with a genetic engineering strategy and further coated with calcium phosphate (CaP) to reduce their toxicity to enhance tumor treatment effects. Wild-type bacterium Escherichia coli Nissle 1917 (EcN) was genetically engineered to highly express tyrosinase to catalyze the intracellular synthesis of melanin, giving melanin-loaded OMVs (OMVMel). To reduce the systemic toxicity in tumor therapy, OMVMel was coated with CaP by surface mineralization to obtain OMVMel@CaP. In comparison with OMVMel, OMVMel@CaP showed lower systemic inflammatory responses in healthy mice and less damage to the liver, spleen, lung, and kidney, so the administration dose could be increased to enhance the antitumor effect. In the acidic tumor microenvironment, the CaP shell disintegrated to release OMVMel to trigger antitumor immune responses. Under costimulation of OMVMel acting as immunoadjuvants and the damage-associated molecular patterns (DAMPs) released by the photothermal effect, the efficiency of tumor photothermal/immunotherapy was largely boosted through promoting the infiltration of matured DCs, M1 macrophages, and activated CD8+ T cells, decreasing the ratio of MDSCs in tumors.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Camundongos , Animais , Membrana Externa Bacteriana , Melaninas , Escherichia coli/genética , Imunoterapia , Neoplasias/terapia , Microambiente Tumoral
10.
Cell Host Microbe ; 32(1): 131-144.e6, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38091982

RESUMO

Timely liver function recovery (LFR) is crucial for postoperative hepatocellular carcinoma (HCC) patients. Here, we established the significance of LFR on patient long-term survival through retrospective and prospective cohorts and identified a key gut microbe, Bifidobacterium longum, depleted in patients with delayed recovery. Fecal microbiota transfer from HCC patients with delayed recovery to mice similarly impacted recovery time post hepatectomy. However, oral gavage of B. longum improved liver function and repair in these mice. In a clinical trial of HCC patients, orally administering a probiotic bacteria cocktail containing B. longum reduced the rates of delayed recovery, shortened hospital stays, and improved overall 1-year survival. These benefits, attributed to diminished liver inflammation, reduced liver fibrosis, and hepatocyte proliferation, were associated with changes in key metabolic pathways, including 5-hydroxytryptamine, secondary bile acids, and short-chain fatty acids. Our findings propose that gut microbiota modulation can enhance LFR, thereby improving postoperative outcomes for HCC patients.


Assuntos
Bifidobacterium longum , Carcinoma Hepatocelular , Neoplasias Hepáticas , Probióticos , Humanos , Camundongos , Animais , Carcinoma Hepatocelular/cirurgia , Estudos Prospectivos , Recuperação de Função Fisiológica , Estudos Retrospectivos , Neoplasias Hepáticas/cirurgia
11.
Biomater Sci ; 12(2): 402-412, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38009319

RESUMO

Bacteria-based cancer therapy (BCT) has been extensively investigated because of the tumor targeting and antitumor immunity activating abilities of bacteria over traditional nanodrugs, but their potential systemic toxicity poses a challenge. Therefore, it is important to visualize the precise localization and real-time distribution of bacteria in vivo to guide the treatment. Herein, biogenetically engineered Escherichia coli Nissle 1917 (EcN) were constructed to highly express tyrosinase to intracellularly generate cyanine 5-labeled melanin-like polymers (Cy5-Mel), thus endowing them with a bright fluorescence and an excellent photothermal performance upon NIR laser irradiation, thereby inducing the intense immunogenic death of tumor cells and release of tumor-associated antigens. Acting as adjuvants, bacteria can greatly stimulate the maturation of dendritic (DC) cells. The in vivo behaviors of these bacteria was monitored via noninvasive optical imaging when they were intravenously administrated to tumor-bearing mice. From this, NIR exposure on tumor sites was carried out at an appropriate time point to induce the damage to tumor cells and for the modulation of tumor immune microenvironments. Thus, via a simple bioengineering strategy, a promising bacteria-based theranostic platform was constructed for tumor treatment.


Assuntos
Nanopartículas , Neoplasias , Probióticos , Animais , Camundongos , Fototerapia/métodos , Terapia Fototérmica , Linhagem Celular Tumoral , Neoplasias/terapia , Imunoterapia , Imagem Óptica , Nanopartículas/uso terapêutico , Microambiente Tumoral
12.
Adv Sci (Weinh) ; 11(3): e2305081, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38009498

RESUMO

Cancer vaccines hold great potential for clinical cancer treatment by eliciting T cell-mediated immunity. However, the limited numbers of antigen-presenting cells (APCs) at the injection sites, the insufficient tumor antigen phagocytosis by APCs, and the presence of a strong tumor immunosuppressive microenvironment severely compromise the efficacy of cancer vaccines. Trained innate immunity may promote tumor antigen-specific adaptive immunity. Here, a personalized cancer vaccine is developed by engineering the inactivated probiotic Escherichia coli Nissle 1917 to load tumor antigens and ß-glucan, a trained immunity inducer. After subcutaneous injection, the cancer vaccine delivering model antigen OVA (BG/OVA@EcN) is highly accumulated and phagocytosed by macrophages at the injection sites to induce trained immunity. The trained macrophages may recruit dendritic cells (DCs) to facilitate BG/OVA@EcN phagocytosis and the subsequent DC maturation and T cell activation. In addition, BG/OVA@EcN remarkably enhances the circulating trained monocytes/macrophages, promoting differentiation into M1-like macrophages in tumor tissues. BG/OVA@EcN generates strong prophylactic and therapeutic efficacy to inhibit tumor growth by inducing potent adaptive antitumor immunity and long-term immune memory. Importantly, the cancer vaccine delivering autologous tumor antigens efficiently prevents postoperative tumor recurrence. This platform offers a facile translatable strategy to efficiently integrate trained immunity and adaptive immunity for personalized cancer immunotherapy.


Assuntos
Vacinas Anticâncer , Neoplasias , Probióticos , Humanos , Imunidade Treinada , Células Dendríticas , Neoplasias/terapia , Antígenos de Neoplasias , Ativação Linfocitária , Probióticos/uso terapêutico , Microambiente Tumoral
13.
Adv Healthc Mater ; 13(7): e2302877, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38041691

RESUMO

The postoperative periodontal wound is in a complex physiological environment; the bacteria accumulation, the saliva stimulation, and the food residues retention will aggravate the wound deterioration. Commercial periodontal dressings have been widely used for postoperative periodontal treatment, and there still exists some problems, such as poor biocompatibility, weak adhesion, insufficient antibacterial, and anti-inflammatory properties. In this study, a chitosan-gallic acid graft copolymer (CS-GA) is synthesized as a potential periodontal dressing hydrogel. CS-GA possesses high swelling rate, adjustable degradability, self-healing ability, biocompatibility, strong adhesion ability, high mechanical properties and toughness. Furthermore, CS-GA has good scavenging ability for ·OH, O2 - , and 1 O2. And CS-GA has good inhibition effect on different bacterial through bacterial membranes damage. CS-GA can stop bleeding in a short time and adsorb erythrocytes to form physical blood clots to enhance the hemostatic performance. In addition, CS-GA can reduce inflammatory factors expressions, increase collagen fibers deposition, and neovascularization to promote wounds healing, which makes it as a potential periodontal dressing for postoperative tissue restoration.


Assuntos
Quitosana , Humanos , Quitosana/química , Ácido Gálico/farmacologia , Curativos Periodontais , Hidrogéis/química , Cicatrização , Polímeros/farmacologia , Aderências Teciduais , Antibacterianos/química
14.
J Nanobiotechnology ; 21(1): 413, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37946199

RESUMO

Various X-ray imaging technologies like computed tomography (CT) and digital subtraction angiography (DSA) are widely used in transcatheter arterial embolization (TAE) therapy for treating hepatocellular cancer (HCC) patients. Although they display high-contrast imaging, they have a few disadvantages, such as complex operation and exposure to ionizing radiation. Thus, ultrasound (US) imaging plays an important role in medical diagnosis because of its advantages, like simple and fast operation, no ionizing radiation exposure, and accurate real-time imaging. Subsequently, Poly N-isopropylacrylamide-co-2,2,3,4,4,4-Hexafluorobutyl methacrylate (PNF) nanogels were synthesized for stabilizing TGFPE, the Pickering emulsions of 2H, 3H-decafluoropentane (HDFP). These emulsions displayed dual abilities of thermosensitive sol-gel transition and long-term US imaging in vitro. Thus, it was concluded that these emulsions could achieve vascular embolization and long-term US imaging in vivo as per the TAE animal model results. The emulsion droplets' flow and accumulation were visualized under the US imaging guidance. In summary, the Pickering emulsions have the potential to be used as US-guided embolization material for mediating TAE surgeries.


Assuntos
Carcinoma Hepatocelular , Embolização Terapêutica , Neoplasias Hepáticas , Animais , Humanos , Neoplasias Hepáticas/terapia , Carcinoma Hepatocelular/terapia , Nanogéis , Temperatura , Emulsões , Embolização Terapêutica/métodos
15.
Signal Transduct Target Ther ; 8(1): 408, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37875473

RESUMO

Immune checkpoint blockade (ICB) therapy, particularly antibodies targeting the programmed death receptor 1 (PD-1) and its ligand (PD-L1), has revolutionized cancer treatment. However, its efficacy as a standalone therapy remains limited. Although ICB therapy in combination with chemotherapy shows promising therapeutic responses, the challenge lies in amplifying chemotherapy-induced antitumor immunity effectively. This relies on efficient drug delivery to tumor cells and robust antigen presentation by dendritic cells (DCs). Here, we developed tumor-repopulating cell (TRC)-derived microparticles with exceptional tumor targeting to deliver doxorubicin (DOX@3D-MPs) for improve anti-PD-1 therapy. DOX@3D-MPs effectively elicit immunogenic tumor cell death to release sufficient tumor antigens. Heat shock protein 70 (HSP70) overexpressed in DOX@3D-MPs contributes to capturing tumor antigens, promoting their phagocytosis by DCs, and facilitating DCs maturation, leading to the activation of CD8+ T cells. DOX@3D-MPs significantly enhance the curative response of anti-PD-1 treatment in large subcutaneous H22 hepatoma, orthotopic 4T1 breast tumor and Panc02 pancreatic tumor models. These results demonstrate that DOX@3D-MPs hold promise as agents to improve the response rate to ICB therapy and generate long-lasting immune memory to prevent tumor relapse.


Assuntos
Antineoplásicos , Micropartículas Derivadas de Células , Neoplasias Pancreáticas , Humanos , Linfócitos T CD8-Positivos , Doxorrubicina/farmacologia , Neoplasias Pancreáticas/terapia , Antígenos de Neoplasias/genética , Antineoplásicos/uso terapêutico
16.
Nat Commun ; 14(1): 5653, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704614

RESUMO

The durable response rate to immune checkpoint blockade such as anti-programmed cell death-1 (PD-1) antibody remains relatively low in hepatocellular carcinoma (HCC), mainly depending on an immunosuppressive microenvironment with limited number of CD8+ T cells, especially stem-like CD8+ T cells, in tumor tissues. Here we develop engineered microparticles (MPs) derived from alpha-fetoprotein (AFP)-overexpressing macrophages to load resiquimod (R848@M2pep-MPsAFP) for enhanced anti-PD-1 therapy in HCC. R848@M2pep-MPsAFP target and reprogram immunosuppressive M2-like tumor-associated macrophages (TAMs) into M1-like phenotype. Meanwhile, R848@M2pep-MPsAFP-reprogrammed TAMs act as antigen-presenting cells, not only presenting AFP antigen to activate CD8+ T cell-mediated antitumor immunity, but also providing an intra-tumoral niche to maintain and differentiate stem-like CD8+ T cells. Combination immunotherapy with anti-PD-1 antibody generates strong antitumor immune memory and induces abundant stem-like CD8+ T cell proliferation and differentiation to terminally exhausted CD8+ T cells for long-term immune surveillance in orthotopic and autochthonous HCC preclinical models in male mice. We also show that the R848-loaded engineered MPs derived from macrophages overexpressing a model antigen ovalbumin (OVA) can improve anti-PD-1 therapy in melanoma B16-OVA tumor-bearing mice. Our work presents a facile and generic strategy for personalized cancer immunotherapy to boost anti-PD-1 therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Masculino , Animais , Camundongos , Macrófagos Associados a Tumor , alfa-Fetoproteínas , Carcinoma Hepatocelular/tratamento farmacológico , Linfócitos T CD8-Positivos , Neoplasias Hepáticas/terapia , Imunossupressores , Antígenos de Neoplasias , Microambiente Tumoral
17.
J Extracell Vesicles ; 12(9): e12356, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37700095

RESUMO

Exosomes play crucial roles in local and distant cellular communication and are involved in various physiological and pathological processes. Tumour-derived exosomes are pivotal to tumorigenesis, but the precise mechanisms underlying their secretion remain elusive. In particular, the SNARE proteins that mediate the fusion of multivesicular bodies (MVBs) with the plasma membrane (PM) in tumour cells are subject to debate. In this study, we identified syntaxin-4, SNAP-23, and VAMP-7 as the SNAREs responsible for exosome secretion in MCF-7 breast cancer cells and found that a SNARE complex consisting of these SNAREs can drive membrane fusion in vitro. Deletion of any of these SNAREs in MCF-7 cells did not affect MVB biogenesis and transportation, indicating their specific involvement in MVB-PM fusion. In addition, syntaxin-4, SNAP-23, and VAMP-7 play equivalent roles in exosome secretion in both HeLa cervical cancer cells and A375 melanoma cells, suggesting their conserved function in exosome secretion. Furthermore, deletion of VAMP-7 in 4T1 mammary carcinoma cells efficiently inhibited exosome secretion and led to significant attenuation of tumour growth and lung metastasis in mouse models, implying that VAMP-7 may hold promise as a novel therapeutic target for breast cancer.


Assuntos
Exossomos , Vesículas Extracelulares , Animais , Camundongos , Humanos , Corpos Multivesiculares , Membrana Celular , Proteínas Qa-SNARE
18.
Research (Wash D C) ; 6: 0223, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37680304

RESUMO

Photodynamic therapy with reactive oxygen species production is a prospective treatment to combat cancer stem cells (CSCs). However, the innate drawbacks, including short lifetime and diffusion distance of reactive oxygen species and hypoxia within solid tumors, have become bottlenecks for clinical applications of photodynamic therapy. Here, we develop a mitochondria-targeting hemicyanine-oleic acid conjugate (CyOA), which can self-assemble into supramolecular nanoparticles (NPs) without any exogenous excipients. CyOA is also shown for targeting the mitochondrial complex II protein succinate dehydrogenase to inhibit oxidative phosphorylation and reverse tumor hypoxia, resulting in 50.4-fold higher phototoxicity against breast cancer stem cells (BCSCs) compared to SO3-CyOA NPs that cannot target to mitochondria. In 4T1 and BCSC tumor models, CyOA NPs achieve higher tumor inhibition and less lung metastasis nodules compared to the clinically used photosensitizer Hiporfin. This study develops a self-assembled small molecule that can serve as both oxidative phosphorylation inhibitor and photosensitizer for eradication of CSCs and treatment of solid tumors.

19.
Biomaterials ; 302: 122324, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37738740

RESUMO

An embolic reagent with easy injection, well-controlled target embolization, and sustained release of chemotherapy drugs is urgently needed for successful trans-arterial chemo-embolization (TACE) treatment. However, the development of a highly effective embolic reagent is still challenged. Here, inspired and guided by the structural supporting properties and defense mechanisms of wood cell walls, an ideal lignin-based embolic nanogel (DOX-pN-KL) was explored. Based on the mechanical support of branched lignin and the π-π stacking force between the lignin aromatic ring with anti-tumor drug doxorubicin (DOX), DOX-pN-KL showed the highest mechanical strength among the reported thermosensitive embolization nanogel and performed high drug-loading and favorable sustained-release. Moreover, further TACE treatment and tumor microenvironment evaluation of VX2 tumor-bearing rabbits showed that this nanogel can completely block all levels of vessels in long term and continuously release DOX, thus having effective inhibition on tumor growth and metastasis. DOX-pN-KL is expected to be a promising alternative reagent for interventional therapy.


Assuntos
Lignina , Neoplasias Hepáticas , Animais , Coelhos , Nanogéis , Madeira , Neoplasias Hepáticas/terapia , Doxorrubicina , Stents , Microambiente Tumoral
20.
Adv Mater ; 35(45): e2211980, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37755231

RESUMO

Tumor-cell-derived microparticles (MPs) can function as anticancer drug-delivery carriers. However, short blood circulation time, large-size-induced insufficient tumor accumulation and penetration into tumor parenchyma, as well as limited cellular internalization by tumor cells and cancer stem cells (CSCs), and difficult intracellular drug release restrict the anticancer activity of tumor-cell-derived MP-based drug-delivery systems. In this work, hydrophobicity-adaptive polymers based on poly(N-isopropylacrylamide) are anchored to tumor-cell-derived MPs for enhanced delivery of the anticancer drug doxorubicin (DOX). The polymers are hydrophilic in blood to prolong the circulation time of DOX-loaded MPs (DOX@MPs), while rapidly switching to hydrophobic at the tumor acidic microenvironment. The hydrophobicity of polymers drives the fission of tumor-cell-derived MPs to form small vesicles, facilitating tumor accumulation, deep tumor penetration, and efficient internalization of DOX@MPs into tumor cells and CSCs. Subsequently, the hydrophobicity of polymers in acidic lysosomes further promotes DOX release to nuclei for strong cytotoxicity against tumor cells and CSCs. The work provides a facile and simple strategy for improved anticancer drug delivery of tumor-cell-derived MPs.


Assuntos
Antineoplásicos , Micropartículas Derivadas de Células , Neoplasias , Humanos , Polímeros/química , Antineoplásicos/química , Doxorrubicina/química , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Interações Hidrofóbicas e Hidrofílicas , Portadores de Fármacos/química , Linhagem Celular Tumoral , Concentração de Íons de Hidrogênio , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...