Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 134(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38950317

RESUMO

Glucose plays a key role in shaping pancreatic ß cell function. Thus, deciphering the mechanisms by which this nutrient stimulates ß cells holds therapeutic promise for combating ß cell failure in type 2 diabetes (T2D). ß Cells respond to hyperglycemia in part by rewiring their mRNA metabolism, yet the mechanisms governing these changes remain poorly understood. Here, we identify a requirement for the RNA-binding protein PCBP2 in maintaining ß cell function basally and during sustained hyperglycemic challenge. PCBP2 was induced in primary mouse islets incubated with elevated glucose and was required to adapt insulin secretion. Transcriptomic analysis of primary Pcbp2-deficient ß cells revealed impacts on basal and glucose-regulated mRNAs encoding core components of the insulin secretory pathway. Accordingly, Pcbp2-deficient ß cells exhibited defects in calcium flux, insulin granule ultrastructure and exocytosis, and the amplification pathway of insulin secretion. Further, PCBP2 was induced by glucose in primary human islets, was downregulated in islets from T2D donors, and impacted genes commonly altered in islets from donors with T2D and linked to single-nucleotide polymorphisms associated with T2D. Thus, these findings establish a paradigm for PCBP2 in governing basal and glucose-adaptive gene programs critical for shaping the functional state of ß cells.


Assuntos
Diabetes Mellitus Tipo 2 , Glucose , Células Secretoras de Insulina , Insulina , Proteínas de Ligação a RNA , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Animais , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Camundongos , Humanos , Glucose/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Insulina/metabolismo , Secreção de Insulina , Camundongos Knockout , Masculino , Adaptação Fisiológica
2.
Development ; 149(13)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35708349

RESUMO

Pancreatic and duodenal homeobox 1 (PDX1) is crucial for pancreas organogenesis, yet the dynamic changes in PDX1 binding in human or mouse developing pancreas have not been examined. To address this knowledge gap, we performed PDX1 ChIP-seq and single-cell RNA-seq using fetal human pancreata. We integrated our datasets with published datasets and revealed the dynamics of PDX1 binding and potential cell lineage-specific PDX1-bound genes in the pancreas from fetal to adult stages. We identified a core set of developmentally conserved PDX1-bound genes that reveal the broad multifaceted role of PDX1 in pancreas development. Despite the well-known dramatic changes in PDX1 function and expression, we found that PDX1-bound genes are largely conserved from embryonic to adult stages. This points towards a dual role of PDX1 in regulating the expression of its targets at different ages, dependent on other functionally congruent or directly interacting partners. We also showed that PDX1 binding is largely conserved in mouse pancreas. Together, our study reveals PDX1 targets in the developing pancreas in vivo and provides an essential resource for future studies on pancreas development.


Assuntos
Genes Homeobox , Proteínas de Homeodomínio , Animais , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Pâncreas , Transativadores/genética , Transativadores/metabolismo , Transcriptoma/genética
3.
Diabetes ; 69(9): 1936-1947, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32540877

RESUMO

The microtubule cytoskeleton of pancreatic islet ß-cells regulates glucose-stimulated insulin secretion (GSIS). We have reported that the microtubule-mediated movement of insulin vesicles away from the plasma membrane limits insulin secretion. High glucose-induced remodeling of microtubule network facilitates robust GSIS. This remodeling involves disassembly of old microtubules and nucleation of new microtubules. Here, we examine the mechanisms whereby glucose stimulation decreases microtubule lifetimes in ß-cells. Using real-time imaging of photoconverted microtubules, we demonstrate that high levels of glucose induce rapid microtubule disassembly preferentially in the periphery of individual ß-cells, and this process is mediated by the phosphorylation of microtubule-associated protein tau. Specifically, high glucose induces tau hyper-phosphorylation via glucose-responsive kinases GSK3, PKA, PKC, and CDK5. This causes dissociation of tau from and subsequent destabilization of microtubules. Consequently, tau knockdown in mouse islet ß-cells facilitates microtubule turnover, causing increased basal insulin secretion, depleting insulin vesicles from the cytoplasm, and impairing GSIS. More importantly, tau knockdown uncouples microtubule destabilization from glucose stimulation. These findings suggest that tau suppresses peripheral microtubules turning over to restrict insulin oversecretion in basal conditions and preserve the insulin pool that can be released following stimulation; high glucose promotes tau phosphorylation to enhance microtubule disassembly to acutely enhance GSIS.


Assuntos
Glucose/farmacologia , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Proteínas tau/metabolismo , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Quinase 5 Dependente de Ciclina/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Células Secretoras de Insulina/metabolismo , Camundongos , Microtúbulos/metabolismo , Fosforilação/efeitos dos fármacos , Proteína Quinase C
5.
Dev Cell ; 53(4): 390-405.e10, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32359405

RESUMO

Although cellular stress response is important for maintaining function and survival, overactivation of late-stage stress effectors cause dysfunction and death. We show that the myelin transcription factors (TFs) Myt1 (Nzf2), Myt2 (Myt1l, Nztf1, and Png-1), and Myt3 (St18 and Nzf3) prevent such overactivation in islet ß cells. Thus, we found that co-inactivating the Myt TFs in mouse pancreatic progenitors compromised postnatal ß cell function, proliferation, and survival, preceded by upregulation of late-stage stress-response genes activating transcription factors (e.g., Atf4) and heat-shock proteins (Hsps). Myt1 binds putative enhancers of Atf4 and Hsps, whose overexpression largely recapitulated the Myt-mutant phenotypes. Moreover, Myt(MYT)-TF levels were upregulated in mouse and human ß cells during metabolic stress-induced compensation but downregulated in dysfunctional type 2 diabetic (T2D) human ß cells. Lastly, MYT knockdown caused stress-gene overactivation and death in human EndoC-ßH1 cells. These findings suggest that Myt TFs are essential restrictors of stress-response overactivity.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Diabetes Mellitus/patologia , Proteínas de Choque Térmico/metabolismo , Células Secretoras de Insulina/citologia , Estresse Fisiológico , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Fator 4 Ativador da Transcrição/genética , Animais , Proliferação de Células , Proteínas de Ligação a DNA/genética , Diabetes Mellitus/metabolismo , Feminino , Proteínas de Choque Térmico/genética , Humanos , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Fatores de Transcrição/genética
6.
Diabetes ; 69(6): 1219-1231, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32245798

RESUMO

Swi-independent 3a and 3b (Sin3a and Sin3b) are paralogous transcriptional coregulators that direct cellular differentiation, survival, and function. Here, we report that mouse Sin3a and Sin3b are coproduced in most pancreatic cells during embryogenesis but become much more enriched in endocrine cells in adults, implying continued essential roles in mature endocrine cell function. Mice with loss of Sin3a in endocrine progenitors were normal during early postnatal stages but gradually developed diabetes before weaning. These physiological defects were preceded by the compromised survival, insulin-vesicle packaging, insulin secretion, and nutrient-induced Ca2+ influx of Sin3a-deficient ß-cells. RNA sequencing coupled with candidate chromatin immunoprecipitation assays revealed several genes that could be directly regulated by Sin3a in ß-cells, which modulate Ca2+/ion transport, cell survival, vesicle/membrane trafficking, glucose metabolism, and stress responses. Finally, mice with loss of both Sin3a and Sin3b in multipotent embryonic pancreatic progenitors had significantly reduced islet cell mass at birth, caused by decreased endocrine progenitor production and increased ß-cell death. These findings highlight the stage-specific requirements for the presumed "general" coregulators Sin3a and Sin3b in islet ß-cells, with Sin3a being dispensable for differentiation but required for postnatal function and survival.


Assuntos
Cálcio/metabolismo , Diabetes Mellitus/metabolismo , Células Secretoras de Insulina/fisiologia , Proteínas Repressoras/metabolismo , Complexo Correpressor Histona Desacetilase e Sin3/metabolismo , Envelhecimento , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sobrevivência Celular , Diabetes Mellitus/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Homeostase , Masculino , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Repressoras/genética , Complexo Correpressor Histona Desacetilase e Sin3/genética
7.
Brain Struct Funct ; 221(9): 4525-4536, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26792004

RESUMO

Adverse experiences early in life hamper the development and maturation of the hippocampus, but how early-life stress perturbs the developmental trajectory of the hippocampus across various life stages and the underlying molecular mechanisms remain to be investigated. In this study, we stressed male mice from postnatal day 2 (P2) to P9, and examined the potential role of CRHR1 in postnatal stress-induced structural remodeling of hippocampal CA3 pyramidal neurons directly after stress (P9), in mid-adolescence (P35) and in adulthood (P90). We found that early-life stress exposure significantly reduced apical dendritic arborization and spine density in CA3 neurons on P9 and P90. Moreover, postnatally stressed neurons underwent increased pruning of spines, especially thin spines, between P35 and P90. These stress-induced immediate and long-term structural abnormalities could be abolished by daily systemic administration of the CRHR1 antagonist antalarmin (20 µg/g of body weight) during stress exposure. However, such treatment strategy failed to attenuate the deleterious stress effects in mid-adolescence on P35. We then extended antalarmin treatment until the end of the second postnatal week, and found that prolonged blockade of CRHR1 could prevent the mid-term impact of early postnatal stress on structural remodeling of CA3 neurons. Our study characterized the influences of early-life stress on the developmental trajectory of hippocampal pyramidal neurons, and highlighted the critical role of CRHR1 in modulating these negative outcomes evoked by early-life stress.


Assuntos
Região CA3 Hipocampal/crescimento & desenvolvimento , Células Piramidais/fisiologia , Receptores de Hormônio Liberador da Corticotropina/fisiologia , Estresse Psicológico/fisiopatologia , Animais , Região CA3 Hipocampal/patologia , Espinhas Dendríticas/patologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Piramidais/patologia , Pirimidinas/administração & dosagem , Pirróis/administração & dosagem , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores , Estresse Psicológico/patologia
8.
Neuropsychopharmacology ; 40(5): 1203-15, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25403725

RESUMO

During the early postnatal period, environmental influences play a pivotal role in shaping the development of the neocortex, including the prefrontal cortex (PFC) that is crucial for working memory and goal-directed actions. Exposure to stressful experiences during this critical period may disrupt the development of PFC pyramidal neurons and impair the wiring and function of related neural circuits. However, the molecular mechanisms of the impact of early-life stress on PFC development and function are not well understood. In this study, we found that repeated stress exposure during the first postnatal week hampered dendritic development in layers II/III and V pyramidal neurons in the dorsal agranular cingulate cortex (ACd) and prelimbic cortex (PL) of neonatal mice. The deleterious effects of early postnatal stress on structural plasticity persisted to adulthood only in ACd layer V pyramidal neurons. Most importantly, concurrent blockade of corticotropin-releasing factor receptor 1 (CRF1) by systemic antalarmin administration (20 µg/g of body weight) during early-life stress exposure prevented stress-induced apical dendritic retraction and spine loss in ACd layer V neurons and impairments in PFC-dependent cognitive tasks. Moreover, the magnitude of dendritic regression, especially the shrinkage of apical branches, of ACd layer V neurons predicted the degree of cognitive deficits in stressed mice. Our data highlight the region-specific effects of early postnatal stress on the structural plasticity of prefrontal pyramidal neurons, and suggest a critical role of CRF1 in modulating early-life stress-induced prefrontal abnormalities.


Assuntos
Córtex Pré-Frontal/anormalidades , Córtex Pré-Frontal/crescimento & desenvolvimento , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Estresse Psicológico/patologia , Estresse Psicológico/fisiopatologia , Animais , Animais Recém-Nascidos , Transtornos de Ansiedade/patologia , Transtornos de Ansiedade/fisiopatologia , Transtornos de Ansiedade/prevenção & controle , Transtornos Cognitivos/patologia , Transtornos Cognitivos/fisiopatologia , Transtornos Cognitivos/prevenção & controle , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/patologia , Espinhas Dendríticas/fisiologia , Modelos Animais de Doenças , Feminino , Antagonistas de Hormônios/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/fisiopatologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/patologia , Células Piramidais/fisiologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Distribuição Aleatória , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores , Estresse Psicológico/tratamento farmacológico
9.
Hippocampus ; 24(5): 528-40, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24493406

RESUMO

Adult individuals with early stressful experience exhibit impaired hippocampal neuronal morphology, synaptic plasticity and cognitive performance. While our knowledge on the persistent effects of early-life stress on hippocampal structure and function and the underlying mechanisms has advanced over the recent years, the molecular basis of the immediate postnatal stress effects on hippocampal development remains to be investigated. Here, we reported that repeated blockade of corticotropin-releasing hormone receptor 1 (CRHR1) ameliorated postnatal stress-induced hippocampal synaptic abnormalities in neonatal mice. Following the stress exposure, pups with fragmented maternal care showed retarded dendritic outgrowth and spine formation in CA3 pyramidal neurons and reduced hippocampal levels of synapse-related proteins. During the stress exposure, repeated blockade of glucocorticoid receptors (GRs) by daily administration of RU486 (100 µg g(-1) ) failed to attenuate postnatal stress-evoked synaptic impairments. Conversely, daily administration of the CRHR1 antagonist antalarmin hydrochloride (20 µg g(-1) ) in stressed pups normalized hippocampal protein levels of synaptophysin, postsynaptic density-95, nectin-1, and nectin-3, but not the N-methyl-d-aspartate receptor subunits NR1 and NR2A. Additionally, GR or CRHR1 antagonism attenuated postnatal stress-induced endocrine alterations but not body growth retardation. Our data indicate that the CRH-CRHR1 system modulates the deleterious effects of early-life stress on dendritic development, spinogenesis, and synapse formation, and that early interventions of this system may prevent stress-induced hippocampal maldevelopment.


Assuntos
Hipocampo/patologia , Neurônios/metabolismo , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Estresse Psicológico/metabolismo , Estresse Psicológico/patologia , Sinapses/patologia , Animais , Animais Recém-Nascidos , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Corticosterona/sangue , Dendritos/patologia , Proteína 4 Homóloga a Disks-Large , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Guanilato Quinases/metabolismo , Antagonistas de Hormônios/farmacologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Mifepristona/farmacologia , Nectinas , Proteínas do Tecido Nervoso/metabolismo , Neurônios/patologia , Neurônios/ultraestrutura , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Estresse Psicológico/tratamento farmacológico , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinaptofisina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...