Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Chemistry ; : e202402020, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981857

RESUMO

Charging power supplies with both fast and visualization functions have a wide range of applications in the information and new energy industries. In this paper, the visualized and contact-type fast charging power supply based on WO3 film and Zn sheet is presented, and the prototype devices are fabricated. Different with the charging method of conventional batteries, charging is achieved by a Zn sheet contacting with a WO3 film moistened with water, resulting in a rapid discoloration of WO3. Theoretical investigation indicates that the interaction between Zn sheet and water molecules is the primary cause of the color change in the WO3 film. The WO3 film completes the colouring state within 10 s in the presence of Zn sheet and water, and the open-circuit voltage of the device is 0.7 V, which can be used to drive various electronics by series-parallel connection. This research introduces a novel method to induce colouring of WO3 films and proposes a fast charging mode different from traditional power sources. It provides valuable insights for the future development of fast charging in the field of electrical energy.

2.
Nanotechnology ; 35(34)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38806011

RESUMO

Low temperature has been a major challenge for lithium-ion batteries to maintain satisfied electrochemical performance, as it leads to poor rechargeability and low capacity retention. Traditional carbonate solvents, vinyl carbonate and dimethyl carbonate are indispensable components of commercial electrolytes. However, the higher melting point of these carbonate solvents causes their electrical conductivity to be easily reduced when temperatures drop below zero, limiting their ability to facilitate lithium ion transport. In this work, we demonstrate that the use of methyl propionate (MP) carboxylate and fluorocarbonate vinyl (FEC) electrolytes can overcome the limitations of low temperature cycling. Compared with carbonate electrolyte, MP has the characteristics of low melting point, low viscosity and low binding energy with Li+, which is crucial to improve the low temperature performance of the battery, while FEC is an effective component to inhibit the side reaction between MP and lithium metal. The carefully formulated MP-based electrolyte can generate a solid electrolyte interface with low resistance and rich in inorganic substances, which is conducive to the smooth diffusion of Li+, allowing the battery to successfully cycle at a high rate of 0.5 C at -20 °C, and giving it a reversible capacity retention rate of 65.3% at -40oC. This work designs a promising advanced electrolyte and holds the potential to overcome limitations of lithium-ion batteries in harsh conditions.

3.
Chemistry ; 30(39): e202400803, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38752562

RESUMO

To meet the demand for higher energy density in lithium-ion batteries and expand their application range, coupling lithium metal anodes with high-voltage cathodes is an ideal solution. However, the compatibility between lithium metal batteries and electrolytes affects their applicability. In this study, proposes a locally concentrated electrolyte based on ethyl acetate (EA) as the solvent, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) as the lithium salt, and lithium difluorooxoborate (LiDFOB) as a sacrificial agent to enhance the low-temperature and high-voltage endurance of Li//Lithium cobalt oxide (LCO) batteries. The Li//LCO battery can operate within the voltage range of 3 to 4.5 V, with an initial discharge specific capacity of 174.5 mAh g-1 at 20 °C. At -40 °C, after 200 cycles, the capacity retention rate is 87.7 %. It can operate under extreme conditions of -70 °C, with a discharge specific capacity of 112.6 mAh g-1. Additionally, LCO//HC batteries using this electrolyte demonstrate excellent performance. Present work provides a new perspective for the optimization of electrolytes for low-temperature lithium-ion batteries.

4.
Acta Cir Bras ; 39: e392324, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38629654

RESUMO

PURPOSE: Patients have been severely suffered from cancer associated pain, and pancreatic cancer is the most severe form of cancer associated with pain. There are very few options available to manage it. The present report evaluated the effect of 5HT2A on pancreatic cancer associated pain. METHODS: Pancreatic cancer was induced by injecting SW 1,990 cells (~3×106 in a 20 µL suspension) into the pancreas and formed a 2-3-mm vesicle using an inoculator fitted with a 26-gauge needle in BALB/c-nu mice. Survival rate and body weight of the mice were observed. Pain behaviour testing was performed at the end of each week (third and fourth week) after surgery. Inflammatory mediators and HDAC 2 proteins were determined in the spinal tissue using quantitative real-time polymerase chain reaction. RESULTS: There was improvement in the survival rate and body weight in 5HT2A antagonist treated group than pancreatic cancer group of mice. Moreover, 5HT2A antagonist ameliorated the alteration in pain behaviour of pancreatic cancer mice. mRNA expression of HDAC2 and level of inflammatory cytokines were reduced in the spinal tissue of 5HT 2A antagonist treated group than pancreatic cancer group of mice. CONCLUSIONS: Data revealed that 5HT2A antagonist ameliorates pain associated with pancreatic cancer mice by HDAC inhibition and inflammatory cytokines. The result of investigation supports that modulation of 5HT2A receptor could be used clinically to protects neuropathic pain in pancreatic cancer.


Assuntos
Dor do Câncer , Neuralgia , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Peso Corporal , Dor do Câncer/tratamento farmacológico , Dor do Câncer/prevenção & controle , Citocinas , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C , Neuralgia/tratamento farmacológico , Neoplasias Pancreáticas/complicações , Receptores de Serotonina/metabolismo
5.
Acta cir. bras ; 39: e392324, 2024. tab, graf
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1556677

RESUMO

ABSTRACT Purpose: Patients have been severely suffered from cancer associated pain, and pancreatic cancer is the most severe form of cancer associated with pain. There are very few options available to manage it. The present report evaluated the effect of 5HT2A on pancreatic cancer associated pain. Methods: Pancreatic cancer was induced by injecting SW 1,990 cells (~3×106in a 20 μL suspension) into the pancreas and formed a 2-3-mm vesicle using an inoculator fitted with a 26-gauge needle in BALB/c-nu mice. Survival rate and body weight of the mice were observed. Pain behaviour testing was performed at the end of each week (third and fourth week) after surgery. Inflammatory mediators and HDAC 2 proteins were determined in the spinal tissue using quantitative real-time polymerase chain reaction. Results: There was improvement in the survival rate and body weight in 5HT2A antagonist treated group than pancreatic cancer group of mice. Moreover, 5HT2A antagonist ameliorated the alteration in pain behaviour of pancreatic cancer mice. mRNA expression of HDAC2 and level of inflammatory cytokines were reduced in the spinal tissue of 5HT 2A antagonist treated group than pancreatic cancer group of mice. Conclusions: Data revealed that 5HT2A antagonist ameliorates pain associated with pancreatic cancer mice by HDAC inhibition and inflammatory cytokines. The result of investigation supports that modulation of 5HT2A receptor could be used clinically to protects neuropathic pain in pancreatic cancer.

6.
Chemosphere ; 341: 140092, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37678592

RESUMO

A novel bacterial strain, Bacillus sp. YM1, was isolated from compost for the efficient degradation of oily food waste under salt stress. The strain's lipase activity, oil degradation ability, and tolerance to salt stress were evaluated in a liquid medium. Additionally, the molecular mechanisms (including key genes and functional processes) underlying the strain's salt-resistant degradation of oil were investigated based on RNA-Seq technology. The results showed that after 24 h of microbial degradation, the degradation rate of triglycerides in soybean oil was 80.23% by Bacillus sp. YM1 at a 30 g L-1 NaCl concentration. The metabolizing mechanism of long-chain triglycerides (C50-C58) by the YM1 strain, especially the biodegradation rate of triglycerides (C18:3/C18:3/C18:3), could reach 98.65%. The most substantial activity of lipase was up to 325.77 U·L-1 at a salinity of 30 g L-1 NaCl. During salt-induced stress, triacylglycerol lipase was identified as the crucial enzyme involved in oil degradation in Bacillus sp. YM1, and its synthesis was regulated by the lip gene (M5E02_13495). Bacillus sp. YM1 underwent adaptation to salt stress through various mechanisms, including the accumulation of free amino acids, betaine synthesis, regulation of intracellular Na+/K+ balance, the antioxidative response, spore formation, and germination. The key genes involved in Bacillus sp. YM1's adaptation to salt stress were responsible for the synthesis of glutamate 5-kinase, superoxide dismutase, catalase, Na+/H+ antiporter, general stress protein, and sporogenic proteins belonging to the YjcZ family. Results indicated that the isolated strain of Bacillus sp. YM1 could significantly degrade oil in a short time under salt stress. This study would introduce new salt-tolerant strains for coping with the biodegradation of oily food waste and provide gene targets for use in genetic engineering.


Assuntos
Bacillus , Compostagem , Eliminação de Resíduos , Bacillus/genética , Alimentos , Cloreto de Sódio/farmacologia , Redes e Vias Metabólicas
7.
Adv Sci (Weinh) ; 10(30): e2302941, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37712146

RESUMO

While hydrovoltaic electrical energy generation developments in very recent years have provided an alternative strategy to generate electricity from the direct interaction of materials with water, the two main issues still need to be addressed: achieving satisfactory output power density and understanding the reliable mechanism. In the present work, the integration of capacitors and water evaporation devices is proposed to provide a stable power supply. The feasible device structure consuming only water and air is green and environmentally sustainable, achieving a recorded power density of 142.72 µW cm-2 . The output power of the series of devices is sufficient to drive portable electronic products with different voltage and current requirements, enabling self-driving systems for portable appliances. It has been shown that the working behavior originates from evaporating potential other than streaming potential. The present work provides both theoretical support and an experimental design for realizing practical application of hydrovoltaic electrical energy generation devices.

8.
J Hazard Mater ; 457: 131862, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37329597

RESUMO

Melatonin (MT) has recently gained significant scientific interest, though its mechanism of action in enhancing plant vigor, cadmium (Cd) tolerance, and Cd phytoremediation processes are poorly understood. Therefore, here we investigated the beneficial role of MT in improving growth and Cd remediation potential of rapeseed (Brassica napus). Plants, with or without MT (200 µM L-1), were subjected to Cd stress (30 mg kg1). Without MT, higher Cd accumulation (up to 99%) negatively affected plant growth and developmental feature as well as altered expression of several key genes (DEGs) involved in different molecular pathways of B. napus. As compared to only Cd-stressed counterparts, MT-treated plants exhibited better physiological performance as indicated by improved leaf photosynthetic and gaseous exchange processes (3-48%) followed by plant growth (up to 50%), fresh plant biomass (up to 45%), dry plant biomass (up to 32%), and growth tolerance indices (up to 50%) under Cd exposure. MT application enhanced Cd tolerance and phytoremediation capacity of B. napus by augmenting (1) Cd accumulation in plant tissues and its translocation to above-ground parts (by up to 45.0%), (2) Cd distribution in the leaf cell wall (by up to 42%), and (3) Cd detoxification by elevating phytochelatins (by up to 8%) and metallothioneins (by upto 14%) biosynthesis, in comparison to Cd-treated plants. MT played a protective role in stabilizing hydrogen peroxide and malondialdehyde levels in the tissue of the Cd-treated plants by enhancing the content of osmolytes (proline and total soluble protein) and activities of antioxidant enzymes (SOD, CAT, APX and GR). Transcriptomic analysis revealed that MT regulated 1809 differentially expressed genes (828 up and 981 down) together with 297 commonly expressed DEGs (CK vs Cd and Cd vs CdMT groups) involved in plant-pathogen interaction pathway, protein processing in the endoplasmic reticulum pathway, mitogen-activated protein kinase signaling pathway, and plant hormone signal transduction pathway which ultimately promoted plant growth and Cd remediation potential in the Cd-stressed plants. These results provide insights into the unexplored pleiotropic beneficial action of MT in enhancing in the growth and Cd phytoextraction potential of B. napus, paving the way for developing Cd-tolerant oilseed crops with higher remediation capacity as a bioecological trial for enhancing phytoremediation of hazardous toxic metals in the environment.


Assuntos
Brassica napus , Melatonina , Poluentes do Solo , Cádmio/metabolismo , Melatonina/farmacologia , Brassica napus/metabolismo , Biodegradação Ambiental , Solo , Antioxidantes/metabolismo , Poluentes do Solo/metabolismo
9.
Langmuir ; 39(25): 8855-8864, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37312243

RESUMO

Lightweight, portability, and sustainability have become key factors of the power source for the rapid development of multifunctional wearable electronic devices. In this work, a washable, wearable, and durable self-charging system for human motion energy harvesting and storage based on asymmetric supercapacitors (ASCs) and triboelectric nanogenerators (TENGs) is investigated. The all-solid-state flexible ASC is composed of a cobalt-nickel layered double hydroxide grown on a carbon cloth (CoNi-LDH@CC) as the positive electrode and activated carbon cloth (ACC) as the negative electrode and exhibits the performance of small size, high flexibility, and superior stability. The device was able to provide a capacity of 345 mF cm-2 and a cycle retention rate of 83% after 5000 cycles, which shows great potential as an energy storage unit. Additionally, flexible silicon rubber-coated carbon cloth (CC) is waterproof and soft and can be used as a TENG textile to gain energy for stable charging of an ASC, which presents an open-circuit voltage and short-circuit current of 280 V and 4 µA, respectively. The ASC and TENG can be assembled to continuously collect and store energy, which provides an all-in-one self-charging system qualified with washable and durable for potential applications in wearable electronics.

10.
Chemistry ; 29(52): e202301583, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37387302

RESUMO

The development of portable electronic devices has created greater demands for multifunctional energy integration systems. Self-powered systems have gained widespread interest because they can collect and storage renewable environmental energy and provide stable electricity to electronic devices. Herein, we developed a flexible self-charging energy system, involving textile-based zinc-ion hybrid (ZIHC) and triboelectric nanogenerator (TENG), which demonstrates wearable, compatibility, lightweight and can quickly harvest and store energy. Nix V2 O5 ⋅ nH2 O (NVO) loaded on carbon cloth (CC) with Ni2+ /H2 O ions intercalated as the cathode was assembled with activated CC to form a ZIHC, which has a voltage range of 2.0 V and capacitance value of 267.1 mF cm-2 as well as good charge and discharge rates and excellent cycling stability. At the same time, the NVO/CC can be assembled with PDMS to form a TENG achieving a maximum instantaneous power of 18.5 mW cm-2 . The device can be flexibly worn over the body to continuously harvest and store biomechanical energy and charge the electronic wristwatch successfully. This work demonstrates great convenience and promising practical applications as sustainable flexible energy system for portable electronic devices.

11.
Chemosphere ; 329: 138655, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37059197

RESUMO

The high oil and salt content of kitchen waste (KW) inhibit bioconversion and humus production. To efficiently degrade oily kitchen waste (OKW), a halotolerant bacterial strain, Serratia marcescens subsp. SLS which could transform various animal fats and vegetable oils, was isolated from KW compost. Its identification, phylogenetic analysis, lipase activity assays, and oil degradation in liquid medium were assessed, and then it was employed to carry out a simulated OKW composting experiment. In liquid medium, the 24 h degradation rate of mixed oils (soybean oil: peanut oil: olive oil: lard = 1:1:1:1, v/v/v/v) was up to 87.37% at 30 °C, pH 7.0, 280 rpm, 2% oil concentration and 3% NaCl concentration. The ultra-performance liquid chromatography/tandem mass spectrometry (UPLC-MS) method demonstrated that the mechanism of SLS strain metabolizing long-chain triglycerides (TAGs) (C53-C60), especially the biodegradation of TAG (C18:3/C18:3/C18:3) by the strain can reach more than 90%. Degradation of 5, 10, 15% concentrations of total mixed oil were also calculated to be 64.57, 71.25, 67.99% respectively after a simulated composting duration of 15 days. The results suggest that the isolated strain of S. marcescens subsp. SLS is suitable for OKW bioremediation in high NaCl concentration within a reasonably short period of time. The findings introduced a salt-tolerant and oil-degrading bacteria, providing insights into the mechanism of oil biodegradation and offering new avenues of study for OKW compost and oily wastewater treatment.


Assuntos
Serratia marcescens , Cloreto de Sódio , Serratia marcescens/metabolismo , Biodegradação Ambiental , Cromatografia Líquida , Filogenia , Cloreto de Sódio/metabolismo , Espectrometria de Massas em Tandem , Óleos de Plantas
12.
Langmuir ; 39(11): 4060-4070, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36942451

RESUMO

The rapid development of personal portable electronic devices has brought an increasingly urgent need for flexible and portable power sources. Herein, a low-cost, wearable, efficient, sustainable energy harvesting and storage system for human motion detection has been developed, based on a supercapacitor (SC) and triboelectric nanogenerator (TENG). Carbon cloth (CC)-loaded ZnO/ZnS nanoarrays and a PVD-treated polyurethane conductive sponge are employed as positive and negative triboelectric friction layers, respectively. Besides, flexible and robust silicone rubber provides stable output performance and enables the TENG to harvest mechanical energy from human motion even under complex conditions. As a result, it shows excellent electrical output performance in terms of the open-circuit voltage, short-circuit current, and average power density, reaching 175 V, 12 µA, and 816.7 mW m-2, respectively. These outstanding performances enable the TENG to effectively charge an all-solid-state symmetrical SC (MnO2/LiMn2O4@CC//MnO2/LiMn2O4@CC) and subsequently store it as electrochemical energy for sustainable power supply. Because of the flexible all-texture-type structure of the entire system, it is capable of monitoring the human body's movement. This work has a promising future in random mechanical energy harvesting and storage, as well as human motion tracking.


Assuntos
Compostos de Manganês , Nanotecnologia , Humanos , Desenho de Equipamento , Óxidos , Fontes de Energia Elétrica
13.
Nanotechnology ; 34(22)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36749984

RESUMO

While metal sulfides have extensively investigated as electrode materials for supercapacitors, the further optimization of their material system is still necessary to achieve satisfied performance. In this work, we reported the synthesis of ternary metal sulfide SnNiCoS and its application as electrode material of asymmetric supercapacitors, in which active carbon is used as the other electrode. For control experiments, asymmetric supercapacitors based on single metal sulfide CoS and binary metal sulfide NiCoS are also fabricated and investigated. The results show that the nanospherical SnNiCoS achieves the best performance. Ternary sulphide materials offer more redox than corresponding single-metal sulphides due to the synergy among various transition metal elements. The specific capacitance is 18.6 F cm-2at current density of 5 mA·cm-2. An energy density of 937.2µWh cm-2is achieved at a power density of 4000µW·cm-2. After 8000 cycles, the capacity retention rate is 82.9%. Present work indicates that SnNiCoS ternary metal sulfide could be a promising composite for high performance supercapacitors.

14.
Nanomaterials (Basel) ; 12(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36500917

RESUMO

Quantum dot-sensitized solar cells (QDSSC) have been regarded as one of the most promising candidates for effective utilization of solar energy, but its power conversion efficiency (PCE) is still far from meeting expectations. One of the most important bottlenecks is the limited collection efficiency of photogenerated electrons in the photoanodes. Herein, we design QDSSCs with a dual-photoanode architecture, and assemble the dual photoanodes with black TiO2 nanoparticles (NPs), which were processed by a femtosecond laser in the filamentation regime, and common CdS/CdSe QD sensitizers. A maximum PCE of 11.7% with a short circuit current density of 50.3 mA/cm2 is unambiguously achieved. We reveal both experimentally and theoretically that the enhanced PCE is mainly attributed to the improved light harvesting of black TiO2 due to the black TiO2 shells formed on white TiO2 NPs.

15.
J Hazard Mater ; 439: 129640, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35882170

RESUMO

Carbon nanotubes present potential applications in soil remediation, particularly in phytoremediation. Yet, how multi-walled carbon nanotubes (MWCNTs) induced hyperaccumulator growth at molecular level remains unclear. Here, physio-biochemical, transcriptomic, and metabolomic analyses were performed to determine the effect of MWCNTs on Solanum nigrum L. (S. nigrum) growth under cadmium and arsenic stresses. 500 mg/kg MWCNTs application significantly promoted S. nigrum growth, especially for root tissues. Specially, MWCNTs application yields 1.38-fold, 1.56-fold, and 1.37-fold enhancement in the shoot length, root length, and fresh biomass, respectively. Furthermore, MWCNTs significantly strengthened P and Fe absorption in roots, as well as the activities of antioxidative enzymes. Importantly, the transcriptomic analysis indicated that S. nigrum gene expression was sensitive to MWCNTs, and MWCNTs upregulated advantageous biological processes under heavy metal(loid)s stress. Besides, MWCNTs reprogramed metabolism that related to defense system, leading to accumulation of 4-hydroxyphenylpyruvic acid (amino acid), 4-hydroxycinnamic acid (xenobiotic), and (S)-abscisic acid (lipid). In addition, key common pathways of differentially expressed metabolites and genes, including "tyrosine metabolism" and "isoquinoline alkaloid biosynthesis" were selected via integrating transcriptome and metabolome analyses. Combined omics technologies, our findings provide molecular mechanisms of MWCNTs in promoting S. nigrum growth, and highlight potential application of MWCNTs in soil remediation.


Assuntos
Metais Pesados , Nanotubos de Carbono , Poluentes do Solo , Biodegradação Ambiental , Cádmio/metabolismo , Metais Pesados/análise , Metais Pesados/toxicidade , Solo/química , Poluentes do Solo/metabolismo , Transcriptoma
16.
Environ Pollut ; 308: 119642, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35716896

RESUMO

Melatonin (M) is a pleiotropic molecule that improves plant growth and increases heavy metal tolerance. The role of M for improving plant growth and tolerance under cadmium (Cd) stress, and mitigation of Cd-induced toxicity has not yet been sufficiently examined. Therefore, here we conducted a glasshouse experiment to explore the influence of various M dosages on Cd detoxification and stress-tolerance responses of Brassica napus under high Cd content (30 mg kg-1). The effects of M on the modulation of Cd tolerance in B. napus plants have been investigated using various growth attributes, Cd accumulation and tolerance indices, and secondary metabolic parameters. We found that Cd stress inhibited root growth (by 11.9%) as well as triggered reactive oxygen species accumulation (by 31.2%) and MDA levels (by 18.7%); however, exogenous M substantially alleviated the adverse effect of oxidative stress by decreasing levels of H2O2 (by 38.7%), MDA (by 13.8%) and EL (by 1.8%) in the Cd-stressed plants, as compared to the M-untreated plants (control). Interestingly, exogenous M reduced Cd accumulation in roots (∼48.2-58.3-fold), stem (∼2.9-5.0-fold) and leaves (∼4.7-6.6-fold) compared to control plants, which might be due to an M-induced defense and/or detoxification response involving a battery of antioxidants. Overall, addition of the exogenous M to the Cd-stressed plants profoundly enhanced Cd tolerance in B. napus relative to control plants. These results suggested the biostimulatory role (at the physiological and molecular level) of M in improving growth, Cd tolerance, and Cd detoxification in B. napus, which indicate the potentiality of M for green remediation of Cd contaminated soils. This green trial would provide a reference for producing renewable bioenergy crops under Cd stress in contaminated soils. However, these recommendations should be verified under field conditions and the potential mechanisms for the interaction between Cd and M should be explicitly explored.


Assuntos
Brassica napus , Melatonina , Poluentes do Solo , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Cádmio/análise , Produtos Agrícolas/metabolismo , Peróxido de Hidrogênio/metabolismo , Melatonina/metabolismo , Melatonina/farmacologia , Raízes de Plantas/metabolismo , Solo , Poluentes do Solo/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-35536010

RESUMO

While flexible supercapacitors with high capacitance and energy density is highly desired for outdoor wearable electronics, their application under low-temperature environments, like other energy storage devices, remains an urgent challenge. Solar thermal energy converts solar light into heat and has been extensively applied for solar desalination and power generation. In the present work, to address the failure problem of energy storage devices in a cold environment, solar thermal energy was used to improve flexible supercapacitor performance at low temperature. As a proof of concept presented here, a typical all-solid-state supercapacitor composed of activated carbon electrodes and gel polymer electrolyte was coated by a carbonized melamine sponge. Due to the ability of photothermal conversion of carbonized melamine sponge, the capacitance of the supercapacitor was greatly enhanced, which could be further improved by adding surface plasmonic nanomaterials, for example, Ag nanowires. Compared with the device without photothermal conversion layers, the specific capacitance increased 3.48 times at -20 °C and retained 87% capacitance at room temperature and the specific capacitance increased 6.69 times at -50 °C and retained 73% capacitance at room temperature. The present work may provide new insights on the application of solar energy and the design of energy storage devices with excellent low-temperature resistance.

18.
Chemosphere ; 300: 134580, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35421442

RESUMO

Nitrate is the main nitrogen source for plant growth, but it can also pollute the environment. A major cause of soil secondary salinization is the rising level of nitrates in the soil, which poses a threat to the sustainability and fertility of global greenhouse soils. Herein, Bacillus megaterium NCT-2 was used as a microbial agent to remove nitrate by bioaugmentation, and the remediation efficiency of secondary salinized soil in different degrees was evaluated. The findings showed that the highest nitrate removal rate of 62.76% was in a medium degree of secondary salinized soil. Moreover, the results of 16S rRNA high-throughput sequencing and quantitative real-time PCR (qPCR) demonstrated that NCT-2 agent reduced the microbial diversity, increased the microbial community stability, and changed the composition and function of the microbial community were changed by NCT-2 agent in all districts soil. Further analysis demonstrated that the NCT-2 bacterial agent significantly increased the key enzyme genes of the assimilation pathway (nitrite reductase gene NasD, 87-404 times, and glutamine reduction enzyme gene GlnA, 13-52 times) and dissimilatory reduction to ammonium (DNRA) (nitrate reductase gene NarG, 14-56 times) in different degrees of secondary salinized soils. This proved that NCT-2 agent could promote the nitrate assimilation and the dissimilation and reduction to ammonium in secondary salinized soil. Thus, the current findings suggested that the NCT-2 agent has a significant potential for reducing excessive nitrate levels in secondary salinized soil. The remediation efficiency was related to the microbial community composition and the degree of secondary salinization. This study could provide a theoretical basis for the remediation of secondary salinized soil in the future.


Assuntos
Compostos de Amônio , Nitratos , Biodegradação Ambiental , Nitratos/metabolismo , Óxidos de Nitrogênio , RNA Ribossômico 16S/genética , Solo , Microbiologia do Solo
19.
Nanotechnology ; 33(29)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35344946

RESUMO

While supercapacitors have been widely studied as the next generation of energy storage devices, to develop active electrode materials for enhancing device performance is still challenging. Herein, we fabricated asymmetric supercapacitors based on NiZn-Layered double hydroxide (LDH) @NiCoSe2hierarchical nanostructures as electrode materials. The NiZn-LDH@NiCoSe2composites are deposited on Ni foam by a two-step strategy, in which NiZn-LDH nanosheets were firstly grown on Ni foam by hydrothermal method, and then NiCoSe2particles were prepared by electrodeposition. Due to the synergistic effect between NiZn-LDH and NiCoSe2, excellent device performance was achieved. In a three-electrode system, the NiZn-LDH@NiCoSe2exhibits a specific capacitance of 2980 F g-1at 1 A g-1. Furthermore, the asymmetric supercapacitor of NiZn-LDH@NiCoSe2//activated carbon (AC) device was assembled, which exhibits the energy density of 49.2 Wh kg-1at the power density of 160 W kg-1, with the capacity retention rate is 91% after 8000 cycles. The results indicates that NiZn-LDH@NiCoSe2is a promising candidate as electrode materials for efficient energy storage devices.

20.
Langmuir ; 38(4): 1479-1487, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35030000

RESUMO

With the miniaturization of wearable smart devices, the demand for portable and sustainable power sources is increasing. Herein, a flexible and lightweight triboelectric nanogenerator (PMC-TENG) was fabricated with MoS2/carbon nanotube (MC)-doped PVDF as the friction substrate based on electrospinning for harvesting random body motion energy under complex mechanical deformations. The charge density on the friction surface of PVDF nanofibers was found to increase significantly as the introduced electron acceptor of the MC composite, and nylon as a clothing material for another friction layer simplifies the structure of the device. Upon optimization of the electrospinning preparation process, the output voltage of the prepared PMC-TENG can reach >300 V and the instantaneous power can reach 0.484 mW (∼6 cm × 6 cm). At the same time, the PMC-TENG remains stable over 3000 cycles and has the ability to charge a capacitor. The flexible device demonstrates an excellent capability of converting mechanical energy to electrical energy. Therefore, this study has good prospects for application in the field of power supply for portable electronic devices and others.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...