Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
Ageing Res Rev ; : 102373, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960046

RESUMO

Parkinson's disease (PD), recognized as the second most prevalent neurodegenerative disease in the aging population, presents a significant challenge due to the current lack of effective treatment methods to mitigate its progression. Many pathogenesis of PD are related to lysosomal dysfunction. Moreover, extensive genetic studies have shown a significant correlation between the lysosomal membrane protein TMEM175 and the risk of developing PD. Building on this discovery, TMEM175 has been identified as a novel potassium ion channel. Intriguingly, further investigations have found that potassium ion channels gradually close and transform into hydrion "excretion" channels in the microenvironment of lysosomes. This finding was further substantiated by studies on TMEM175 knockout mice, which exhibited pronounced motor dysfunction in pole climbing and suspension tests, alongside a notable reduction in dopamine neurons within the substantia nigra compacta. Despite these advancements, the current research landscape is not without its controversies. In light of this, the present review endeavors to methodically examine and consolidate a vast array of recent literature on TMEM175. This comprehensive analysis spans from the foundational research on the structure and function of TMEM175 to expansive population genetics studies and mechanism research utilizing cellular and animal models.A thorough understanding of the structure and function of TMEM175, coupled with insights into the intricate mechanisms underpinning lysosomal dysfunction in PD dopaminergic neurons, is imperative. Such knowledge is crucial for pinpointing precise intervention targets, thereby paving the way for novel therapeutic strategies that could potentially alter the neurodegenerative trajectory of PD.

2.
NPJ Parkinsons Dis ; 10(1): 129, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38961119

RESUMO

The seeding amplification assay (SAA) has recently emerged as a valuable tool for detecting α-synuclein (αSyn) aggregates in various clinically accessible biospecimens. Despite its efficiency and specificity, optimal tissue-specific conditions for distinguishing Parkinson's disease (PD) from non-PD outside the brain remain underexplored. This study systematically evaluated 150 reaction conditions to identify the one with the highest discriminatory potential between PD and non-synucleinopathy controls using skin samples, resulting in a modified SAA. The streamlined SAA achieved an overall sensitivity of 92.46% and specificity of 93.33% on biopsy skin samples from 332 PD patients and 285 controls within 24 h. Inter-laboratory reproducibility demonstrated a Cohen's kappa value of 0.87 (95% CI 0.69-1.00), indicating nearly perfect agreement. Additionally, αSyn seeds in the skin were stable at -80 °C but were vulnerable to short-term exposure to non-ultra-low temperatures and grinding. This study thoroughly investigated procedures for sample preprocessing, seed amplification, and storage, introducing a well-structured experimental framework for PD diagnosis using skin samples.

3.
J Agric Food Chem ; 72(23): 12956-12966, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38820064

RESUMO

Bees, one of the most vital pollinators in the ecosystem and agriculture, are currently threatened by neonicotinoids. To explore the molecular mechanisms of neonicotinoid toxicity to bees, the different binding modes of imidacloprid, thiacloprid, and flupyradifurone with nicotinic acetylcholine receptor (nAChR) α1ß1 and cytochrome P450 9Q3 (CYP9Q3) were studied using homology modeling and molecular dynamics simulations. These mechanisms provided a basis for the design of compounds with a potential low bee toxicity. Consequently, we designed and synthesized a series of triazinone derivatives and assessed their bioassays. Among them, compound 5a not only displayed substantially insecticidal activities against Aphis glycines (LC50 = 4.40 mg/L) and Myzus persicae (LC50 = 6.44 mg/L) but also had low toxicity to Apis mellifera. Two-electrode voltage clamp recordings further confirmed that compound 5a interacted with the M. persicae nAChR α1 subunit but not with the A. mellifera nAChR α1 subunit. This work provides a paradigm for applying molecular toxic mechanisms to the design of compounds with low bee toxicity, thereby aiding the future rational design of eco-friendly nicotinic insecticides.


Assuntos
Proteínas de Insetos , Inseticidas , Neonicotinoides , Receptores Nicotínicos , Abelhas/efeitos dos fármacos , Animais , Inseticidas/química , Inseticidas/toxicidade , Neonicotinoides/química , Neonicotinoides/toxicidade , Neonicotinoides/metabolismo , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/química , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Afídeos/efeitos dos fármacos , Nitrocompostos/química , Nitrocompostos/toxicidade , Desenho de Fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/química , Simulação de Dinâmica Molecular , Ligação Proteica , Tiazinas
4.
J Agric Food Chem ; 72(20): 11341-11350, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38713071

RESUMO

Insect neuropeptides play an essential role in regulating growth, development, reproduction, nerve conduction, metabolism, and behavior in insects; therefore, G protein-coupled receptors of neuropeptides are considered important targets for designing green insecticides. Cockroach-type allatostatins (ASTs) (FGLamides allatostatins) are important insect neuropeptides in Diploptera punctata that inhibit juvenile hormone (JH) synthesis in the corpora allata and affect growth, development, and reproduction of insects. Therefore, the pursuit of novel insecticides targeting the allatostatin receptor (AstR) holds significant importance. Previously, we identified an AST analogue, H17, as a promising candidate for pest control. Herein, we first modeled the 3D structure of AstR in D. punctata (Dippu-AstR) and predicted the binding mode of H17 with Dippu-AstR to study the critical interactions and residues favorable to its bioactivity. Based on this binding mode, we designed and synthesized a series of H17 derivatives and assessed their insecticidal activity against D. punctata. Among them, compound Q6 showed higher insecticidal activity than H17 against D. punctata by inhibiting JH biosynthesis, indicating that Q6 is a potential candidate for a novel insect growth regulator (IGR)-based insecticide. Moreover, Q6 exhibited insecticidal activity against Plutella xylostella, indicating that these AST analogs may have a wider insecticidal spectrum. The underlying mechanisms and molecular conformations mediating the interactions of Q6 with Dippu-AstR were explored to understand its effects on the bioactivity. The present work clarifies how a target-based strategy facilitates the discovery of new peptide mimics with better bioactivity, enabling improved IGR-based insecticide potency in sustainable agriculture.


Assuntos
Proteínas de Insetos , Inseticidas , Neuropeptídeos , Peptidomiméticos , Inseticidas/química , Inseticidas/farmacologia , Inseticidas/síntese química , Animais , Neuropeptídeos/química , Neuropeptídeos/farmacologia , Neuropeptídeos/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Peptidomiméticos/química , Peptidomiméticos/farmacologia , Peptidomiméticos/síntese química , Desenho de Fármacos , Hormônios Juvenis/química , Hormônios Juvenis/farmacologia , Hormônios Juvenis/metabolismo , Baratas/efeitos dos fármacos , Baratas/química
5.
J Agric Food Chem ; 72(18): 10271-10281, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38655868

RESUMO

Insect growth regulators (IGRs) are important green insecticides that disrupt normal growth and development in insects to reduce the harm caused by pests to crops. The ecdysone receptor (EcR) and three chitinases OfChtI, OfChtII, and OfChi-h are closely associated with the molting stage of insects. Thus, they are considered promising targets for the development of novel insecticides such as IGRs. Our previous work identified a dual-target compound 6j, which could act simultaneously on both EcR and OfChtI. In the present study, 6j was first found to have inhibitory activities against OfChtII and OfChi-h, too. Subsequently, taking 6j as a lead compound, 19 novel acetamido derivatives were rationally designed and synthesized by introducing an acetamido moiety into the amide bridge based on the flexibility of the binding cavities of 6j with EcR and three chitinases. Then, their insecticidal activities against Plutella xylostella (P. xylostella), Ostrinia furnacalis (O. furnacalis), and Spodoptera frugiperda (S. frugiperda) were carried out. The bioassay results revealed that most of these acetamido derivatives possessed moderate to good larvicidal activities against three lepidopteran pests. Especially, compound I-17 displayed excellent insecticidal activities against P. xylostella (LC50, 93.32 mg/L), O. furnacalis (LC50, 114.79 mg/L), and S. frugiperda (86.1% mortality at 500 mg/L), significantly better than that of 6j. In addition, further protein validation and molecular docking demonstrated that I-17 could act simultaneously on EcR (17.7% binding activity at 8 mg/L), OfChtI (69.2% inhibitory rate at 50 µM), OfChtII (71.5% inhibitory rate at 50 µM), and OfChi-h (73.9% inhibitory rate at 50 µM), indicating that I-17 is a potential lead candidate for novel multitarget IGRs. This work provides a promising starting point for the development of novel types of IGRs as pest management agents.


Assuntos
Quitinases , Desenho de Fármacos , Proteínas de Insetos , Inseticidas , Hormônios Juvenis , Mariposas , Pirazóis , Spodoptera , Animais , Inseticidas/química , Inseticidas/farmacologia , Inseticidas/síntese química , Spodoptera/efeitos dos fármacos , Spodoptera/crescimento & desenvolvimento , Mariposas/efeitos dos fármacos , Mariposas/crescimento & desenvolvimento , Mariposas/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/genética , Relação Estrutura-Atividade , Hormônios Juvenis/farmacologia , Hormônios Juvenis/química , Pirazóis/química , Pirazóis/farmacologia , Pirazóis/síntese química , Quitinases/metabolismo , Quitinases/química , Quitinases/antagonistas & inibidores , Receptores de Esteroides/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/química , Simulação de Acoplamento Molecular , Larva/crescimento & desenvolvimento , Larva/efeitos dos fármacos , Acetamidas/farmacologia , Acetamidas/química , Estrutura Molecular
6.
Quant Imaging Med Surg ; 14(4): 2916-2926, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38617176

RESUMO

Background: Endovascular therapy is the primary treatment modality for intracranial aneurysms (IA). The objective of this study was to assess the effectiveness and safety of a pipeline embolization device (PED) for the treatment of IA. Methods: This retrospective study was conducted at a single center. Data were collected for all patients who underwent PED treatment at the Fourth Affiliated Hospital of Xinjiang Medical University between December 2018 and January 2022. Clinical characteristics, aneurysm-related characteristics, treatment details, and clinical and imaging outcomes were collected and analyzed. Results: A total of 60 consecutive patients with 60 IAs were treated with a PED. The mean age of the participants was 61.8 years, with 53% being female. The average size of the aneurysms was 14.7 mm, with 54 located in the anterior circulation and six in the posterior circulation. The median last follow-up time was 13.0 months (range, 11-24 months). All patients underwent final digital subtraction angiography (DSA) for angiographic follow-up, and 50 aneurysms (83.3%) were completely occluded. The overall complication rate was 3.3%, and there were no reported mortalities. Among the 12 cases of ruptured aneurysms, all of which underwent adjunctive coil embolization, the complete occlusion rate was 91.7% with a complication rate of 16.6% [ischemic complication and modified Rankin scale (mRS) deteriorated]. In the 6 cases of posterior circulation aneurysms (2 in the basilar artery), 5 cases achieved complete occlusion and 1 case achieved near-complete occlusion, with no reported complications or mortality. Conclusions: The use of PEDs appears to be an effective treatment option for IA, demonstrating high occlusion rates and low complication rates. While the application of PEDs for the treatment of ruptured aneurysms did not increase the risk of secondary aneurysm rupture, caution is still warranted due to a higher complication rate. In the treatment of aneurysms of the vertebrobasilar artery using PEDs, this study achieved favorable efficacy outcomes without complications nor patient mortality. However, further studies are needed to validate these findings.

7.
Neurol Sci ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38499889

RESUMO

BACKGROUND: Parkinson's disease (PD) is viewed as a progressively deteriorating neurodegenerative disorder, the exact etiology of which remains not fully deciphered to this date. The gut microbiota could play a crucial role in PD development by modulating the human immune system. OBJECTIVE: This study aims to explore the relationship between gut microbiota and PD, focusing on how immune characteristics may both directly and indirectly influence their interaction. METHODS: Utilizing cumulative data from genome-wide association studies (GWAS), our research conducted a two-sample Mendelian randomization (MR) analysis to clarify the association between the gut microbiome and PD. Additionally, by employing a two-step MR approach, we assessed the impact of gut microbiota on PD development via immune characteristics and quantified HLA-DR mediation effect on plasmacytoid dendritic cells (pDCs). RESULTS: We discovered significant associations between PD and microbiota, comprising one class, one order, two families, and two genera. Furthermore, we explored the extent to which HLA-DR on pDCs mediates the effect of Butyrivibrio gut microbiota on PD. CONCLUSION: Our study emphasizes the complex interactions between the gut microbiota, immune characteristics, and PD. The relationships and intermediary roles identified in our research provide important insights for developing potential therapies that target the gut microbiome to alleviate symptoms in PD patients.

8.
IEEE Trans Med Imaging ; 43(1): 229-240, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37432810

RESUMO

Rigidity is one of the common motor disorders in Parkinson's disease (PD), which lead to life quality deterioration. The widely-used rating-scale-based approach for rigidity assessment still depends on the availability of experienced neurologists and is limited by rating subjectivity. Given the recent successful applications of quantitative susceptibility mapping (QSM) in auxiliary PD diagnosis, automated assessment of PD rigidity can be essentially achieved through QSM analysis. However, a major challenge is the performance instability due to the confounding factors (e.g., noise and distribution shift) which conceal the truly-causal features. Therefore, we propose a causality-aware graph convolutional network (GCN) framework, where causal feature selection is combined with causal invariance to ensure that causality-informed model decisions are reached. Firstly, a GCN model that integrates causal feature selection is systematically constructed at three graph levels: node, structure, and representation. In this model, a causal diagram is learned to extract a subgraph with truly-causal information. Secondly, a non-causal perturbation strategy is developed along with an invariance constraint to ensure the stability of the assessment results under different distributions, and thus avoid spurious correlations caused by distribution shifts. The superiority of the proposed method is shown by extensive experiments and the clinical value is revealed by the direct relevance of selected brain regions to rigidity in PD. Besides, its extensibility is verified on other two tasks: PD bradykinesia and mental state for Alzheimer's disease. Overall, we provide a clinically-potential tool for automated and stable assessment of PD rigidity. Our source code will be available at https://github.com/SJTUBME-QianLab/Causality-Aware-Rigidity.


Assuntos
Encéfalo , Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico por imagem , Software
9.
Pest Manag Sci ; 80(2): 577-585, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37735837

RESUMO

BACKGROUND: Sex pheromones have proven to be a viable tool for monitoring and controlling pests and is an important part of integrated pest management (IPM). The noctuid moth Macdunnoughia crassisigna Warren poses a significant threat as a defoliator pest, impacting soybean and cruciferous vegetable production and quality in East Asia. However, a lack of comprehensive knowledge about its sexual chemical signaling hampers the development of semiochemical-based IPM approaches for M. crassisigna. RESULTS: We first determined the mating rhythms of M. crassisigna. We then collected pheromones from the sex glands of virgin females at the mating peak and analyzed their components using gas chromatography-electroantennogram detection analysis. The results showed that three components elicited significant electrophysiological responses in male antennae. Gas chromatography-mass spectrometry analysis characterized these components as (Z)-7-dodecene acetate (Z7-12:OAc), (Z)-9-tetradecene acetate (Z9-14:OAc), and (Z)-11-hexadecen-1-ol (Z11-16:OH). Further field experiments indicated that the mixture of Z7-12:OAc and Z9-14:OAc at a ratio of 3:1 displayed significant attractivity to males, confirming its role as a putative sex pheromone of M. crassisigna. Long-term monitoring tests showed that traps baited with these pheromone lures effectively mirrored the population dynamics of M. crassisigna. CONCLUSION: This study successfully identified and validated the sex pheromone released by female M. crassisigna and formulated potent sex lures for field-based pest monitoring. These findings enriched our understanding of chemical communication in Noctuidae and laid a foundation for developing practical monitoring and control methods against M. crassisigna. © 2023 Society of Chemical Industry.


Assuntos
Lepidópteros , Mariposas , Atrativos Sexuais , Feminino , Masculino , Animais , Lepidópteros/fisiologia , Atrativos Sexuais/farmacologia , Atrativos Sexuais/química , Cromatografia Gasosa-Espectrometria de Massas , Mariposas/fisiologia , Feromônios , Acetatos
10.
Pest Manag Sci ; 80(3): 1099-1106, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37850826

RESUMO

BACKGROUND: The push-pull strategy is considered as a promising eco-friendly method for pest management. Plant volatile organic compounds (PVOCs) act as semiochemicals constitute the key factor in implementing this strategy. Benzyl alcohol and geraniol, as functional PVOCs, were reported to regulate insect behavior, showing the potential application in pest control. Using geraniol as lead, a geraniol derivative 5i with fine repellent activity was discovered in our previous work. In order to explore novel, eco-friendly aphid control agents, a series of benzyl geranate derivatives was designed and synthesized using 5i as the lead and benzyl alcohol as the active fragment. RESULTS: Benzyl alcohol was firstly evaluated to have repellent activity to Acyrthosiphon pisum. Based on this repellent fragment, a series of novel benzyl geranate derivatives was rationally designed and synthesized using a scaffold-hopping strategy. Among them, compound T9, with a binding affinity (Kd = 0.43 µm) and a substantial repellency of 64.7% against A. pisum, is the most promising compound. Molecule docking showed that hydrophobic and hydrogen-bonding interactions substantially influenced the binding affinity of compounds with ApisOBP9. Additionally, T9 exhibited low-toxicity to honeybees and ladybugs. CONCLUSION: Using a simple scaffold-hopping strategy combined with active fragment benzyl alcohol, a new derivative T9, with high aphid-repellency and low-toxicity to nontarget organisms, can be considered as a novel potential eco-friendly aphid control agent for sustainable agriculture. © 2023 Society of Chemical Industry.


Assuntos
Afídeos , Repelentes de Insetos , Animais , Monoterpenos Acíclicos , Insetos , Álcoois Benzílicos , Repelentes de Insetos/química
11.
Pestic Biochem Physiol ; 197: 105653, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38072528

RESUMO

Allatostatin (AS) or Allatotropin (AT) is a class of insect short neuropeptide F (sNPF) that affects insect growth and development by inhibiting or promote the synthesis of juvenile hormone (JH) in different insects. III-2 is a novel sNPF analog derived from a group of nitroaromatic groups connected by different amino acids. In this study, we found that III-2 showed high insecticidal activity against S. frugiperda larvae with a LC50 of 18.7 mg L-1. As demonstrated by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), III-2 particularly facilitated JH III and hindered 20E synthesis in S. frugiperda. The results of RNA-Seq and quantitative real-time polymerase chain reaction (qPCR) showed that III-2 treatment promoted the expression of key genes such as SfCYP15C1 in JH synthesis pathway and inhibited the expression of SfCYP314A1 and other genes in the 20E synthetic pathway. Significant differences were also observed in the expression of the genes related to cuticle formation. We report for the first time that sNPF compounds specifically interfere with the synthesis and secretion of a certain JH in insects, thus affecting the ecdysis and growth of insects, and leading to death. This study may provide a new plant conservation concept for us to seek the targeted control of certain insects based on specific interference with different JH.


Assuntos
Hormônios Juvenis , Espectrometria de Massas em Tandem , Animais , Spodoptera/genética , Spodoptera/metabolismo , Cromatografia Líquida , Hormônios Juvenis/farmacologia , Hormônios Juvenis/metabolismo , Larva/metabolismo , Insetos
12.
J Agric Food Chem ; 71(49): 19333-19342, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38050804

RESUMO

Novel agrochemicals have been successfully developed using target-based drug design (TBDD). To discover a novel, efficient, and highly selective nicotinic insecticide candidate, we developed a unified pharmacological model using TBDD by studying the binding modes of 11 nicotinic acetylcholine receptor (nAChR) modulators with acetylcholine binding protein (AChBP) targets for the first time. This model was used to design and develop a series of 1,2,4-triazolone derivatives. Bioassays demonstrated excellent insecticidal activities against Aphis glycines of compounds 4k (LC50 = 4.95 mg/L) and 4q (LC50 = 3.17 mg/L), and low toxicities to Apis mellifera. Additionally, compound 4q was stably bound to Aplysia californica AChBP, which was consistent with the pharmacological model obtained via molecular docking and molecular dynamics simulations. Therefore, compound 4q could be a potential lead candidate targeting nAChR. The explicit pharmacological model of nAChR modulators with Ac-AChBP in this study may facilitate the future rational design of eco-friendly nicotinic insecticides.


Assuntos
Inseticidas , Receptores Nicotínicos , Animais , Abelhas , Receptores Nicotínicos/metabolismo , Simulação de Acoplamento Molecular , Nicotina , Inseticidas/farmacologia , Inseticidas/química , Proteínas de Transporte/metabolismo
13.
Quant Imaging Med Surg ; 13(12): 8031-8041, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38106254

RESUMO

Background: Managing patients with symptomatic non-acute intracranial large artery occlusion (SNA-ILAO) poses a significant challenge due to the high morbidity and risk of recurrent critical ischemic events, even with standard medical therapy. This unique subgroup of patients requires specialized attention. The aim of this study is to evaluate the feasibility and safety of endovascular interventional recanalization for SNA-ILAO. Methods: We retrospectively collected data of patients with SNA-ILAO who underwent endovascular interventional therapy at the Fourth Affiliated Hospital of Xinjiang Medical University from 2018 to 2021. The collected data included clinical demography, imaging data, treatment details, and prognosis. Follow-up imaging assessments were conducted for the patients, and descriptive statistics were performed. Results: A total of 24 patients were enrolled, with a majority being male (58.3%) and a mean age of 62.0±9.3 years. The pre-treatment median modified Rankin scale (mRS) and the National Institutes of Health Stroke Scale (NIHSS) scores at baseline were 3 and 1, respectively. The most common occlusion location was the middle cerebral artery (MCA), including M1 (70.8%), M2 (20.8%), and M3 (4.7%). Successful recanalization was achieved in all 24 patients, with 21 cases (87.5%) achieving thrombolysis in cerebral infarction (TICI) 3 reperfusion and the remaining 3 cases (12.5%) achieving TICI 2b reperfusion. Asymptomatic intracranial hemorrhage (ICH) occurred in 2 patients (8.3%). During the first 30-day clinical follow-up, none of these patients experienced any recurrent cerebral ischemic events. During the 29.5-month follow-up period for vessel imaging, only 12.5% (3/24) of patients who had follow-up imaging experienced re-stenosis. Conclusions: Endovascular recanalization is a potentially safe and effective procedure for patients with SNA-ILAO. However, it is important to note that there is still a non-negligible rate of complications associated with this treatment. Therefore, exercising caution and implementing strict controls when administering this procedure is crucial.

14.
Int. j. morphol ; 41(4): 1128-1134, ago. 2023. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1514339

RESUMO

SUMMARY: This study investigated the role and mechanism of aspirin combined with rehabilitation training in the nerve injury repair and Schwann cell changes in rats with sciatic nerve injury. Totally, 120 male healthy SD rats were randomly divided into sham, model, aspirin, and aspirin + rehabilitation groups, with 30 rats in each group. The sciatic nerve function index (SFI), photothermal pain tolerance threshold and inclined plane test results at 4, 6, and 8 weeks after operation were compared. The distance of sensory nerve regeneration and the expression of S100B protein in Schwann cells were analyzed. Compared with the sham group, the SFI of the model, aspirin, and aspirin+rehabilitation groups were significantly lower at 4, 6, and 8 weeks after operation. However, the aspirin and aspirin+rehabilitation groups had significantly higher SFI than the model group. The SFI at 6 and 8 weeks after operation was higher in the aspirin+rehabilitation group than that in the aspirin group (P<0.05). The photothermal pain tolerance threshold of the sham, aspirin, and aspirin+rehabilitation groups were significantly higher than those of the model group at 4, 6, and 8 weeks after operation (P<0.05). The inclination angles of the model, aspirin, and aspirin+rehabilitation groups were significantly lower than those of the sham group at 4, 6, and 8 weeks after operation, and the inclination angle of the aspirin+rehabilitation group was significantly higher than that of the model and aspirin groups (P<0.05). The sensory nerve regeneration distance in aspirin and aspirin+rehabilitation groups was higher than that in the sham and model groups (P<0.05). The expression of S100B protein in the aspirin and aspirin+rehabilitation groups was higher than that in the model group (P<0.05). Aspirin combined with rehabilitation training can promote the functional recovery of sciatic nerve injury, and the mechanism may be related to the increase of the expression of S100B protein in Schwann cells.


En este estudio se investigó el papel y el mecanismo que desempeña la aspirina combinada, con el entrenamiento de rehabilitación en la reparación de lesiones nerviosas y los cambios en los schwannocitos en ratas con lesiones en el nervio ciático. En total, 120 ratas SD macho sanas se dividieron aleatoriamente en cuatro grupos de 30 ratas en cada uno: simulación, modelo, aspirina y aspirina + rehabilitación. Se compararon el índice de función del nervio ciático (SFI), el umbral de tolerancia al dolor fototérmico y los resultados de la prueba del plano inclinado a las 4, 6 y 8 semanas después de la operación. Se analizó la distancia de regeneración del nervio sensorial y la expresión de la proteína S100B en los schwannocitos. En comparación con el grupo simulado, el SFI de los grupos modelo, aspirina y aspirina+rehabilitación fue significativamente menor a las 4, 6 y 8 semanas después de la operación. Sin embargo, los grupos de aspirina y aspirina + rehabilitación tuvieron un SFI significativamente más alto que el grupo modelo. El SFI a las 6 y 8 semanas después de la operación fue mayor en el grupo de aspirina + rehabilitación que en el grupo de aspirina (P<0,05). El umbral de tolerancia al dolor fototérmico de los grupos simulado, aspirina y aspirina+rehabilitación fue significativamente mayor que el del grupo modelo a las 4, 6 y 8 semanas después de la operación (P<0,05). Los ángulos de inclinación de los grupos modelo, aspirina y aspirina+rehabilitación fueron significativamente menores que los del grupo simulado a las 4, 6 y 8 semanas después de la operación, y el ángulo de inclinación del grupo aspirina+rehabilitación fue significativamente mayor que el de los grupos modelo y aspirina (P<0.05). La distancia de regeneración del nervio sensorial en los grupos de aspirina y aspirina+rehabilitación fue mayor que en los grupos simulado y modelo (P<0,05). La expresión de la proteína S100B en los grupos de aspirina y aspirina+rehabilitación fue mayor que en el grupo modelo (P<0,05). La aspirina combinada con el entrenamiento de rehabilitación puede promover la recuperación funcional de la lesión del nervio ciático, y el mecanismo puede estar relacionado con el aumento de la expresión de la proteína S100B en los schwannocitos.


Assuntos
Animais , Ratos , Nervo Isquiático/citologia , Exercício Físico , Aspirina/uso terapêutico , Neuropatia Ciática/reabilitação , Células de Schwann , Imuno-Histoquímica , Limiar da Dor , Terapia Combinada , Neuropatia Ciática/fisiopatologia , Modelos Animais de Doenças
15.
Parkinsons Dis ; 2023: 8848642, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37469393

RESUMO

Objective: To investigate the role of aberrant Dyrk1a expression in phosphorylation modification at the α-synuclein serine 129 (Ser129) site to analyze its molecular mechanism in mediating apoptosis of PD. Methods: The protein level of P-α-synuclein (Ser129), α-synuclein, Bcl-2, Bax, active caspase 3, GSK3ß, PI3K, AKT, and cyclinD1 were detected. The mRNA transcript levels of Dyrk1a and DAT and protein levels of IL-1ß, IL-6, COX-2, and TNF-α were detected. Results: P-α-synuclein (Ser129), α-synuclein, Bax, active caspase 3, GSK3ß, and cyclinD1 expressions were decreased in Dyrk1a-AAV-ShRNA (P < 0.05), and Bcl-2, AKT, and PI3K expressions were increased (P < 0.05). Increased TH protein expression was shown in Dyrk1a-AAV-ShRNA (P < 0.05). Dyrk1a mRNA was decreased in the Dyrk1a-AAV-ShRNA group (P < 0.05), and DAT mRNA was increased (P < 0.05). IL-1ß, IL-6, COX-2, and TNF-α protein levels were decreased in Dyrk1al-AAV-Sh-RNA (P < 0.05). Transcriptome sequencing showed that Fam220a, which was expected to activate STAT family protein binding activity and participate in the negative regulation of transcription through RNA polymerase II and protein dephosphorylation showed differentially upregulated expression. The untargeted metabolome showed that the major compounds in the Dyrk1a-AAV-ShRNA group were hormones and transmission mediators and the most metabolism-related pathways. Fam220a showed differentially upregulated expression, and differentially expressed genes were enriched for the neuroactive ligand-receptor interaction, vascular smooth muscle contraction, and melanogenesis-related pathways. Conclusion: Abnormal Dyrk1a expression can affect α-synuclein phosphorylation modifications, and dyrk1a knockdown activates the PI3K/AKT pathway and reduces dopaminergic neuron apoptosis. It provides a theoretical basis for the group to further investigate the molecular mechanism.

16.
J Agric Food Chem ; 71(29): 11026-11034, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37443424

RESUMO

To discover fungicides with novel targets, a series of N-acyl-1,2,3,4-tetrahydroquinoline (NATHQ) derivatives were designed and synthesized by linking the active substructure NATHQ moiety in aspernigerin with the O-benzyl oxime-ether scaffold in commercial agrochemicals. Target compound structures were identified using proton and carbon-13 nuclear magnetic resonance spectroscopies and high-resolution mass spectrometry. Preliminary bioassays indicated that at 40 mg/L, some target compounds exhibited moderate to considerable in vitro fungicidal activities against Rhizoctonia solani and Botrytis cinerea. In particular, compound 3j exhibited higher fungicidal activities both in vitro (EC50 = 0.733 mg/L) and in vivo (EC50 = 15.2 mg/L) against R. solani than the commercial fungicide prochloraz; therefore, it should be a promising fungicide candidate against rice sheath blight. Additionally, compound 3j exhibited good laccase inhibitory activity (73.2% at 200 mg/L). Molecular docking revealed that the bis-cyano-oxime-ether moiety of compound 3j exhibited an excellent binding mode with the laccase target protein and could be used as a lead compound for developing laccase inhibitors. The structural features of these NATHQ derivatives will provide inspiration for developing laccase inhibitors and discovering more effective fungicides to control agricultural diseases.


Assuntos
Fungicidas Industriais , Oryza , Relação Estrutura-Atividade , Fungicidas Industriais/química , Simulação de Acoplamento Molecular , Lacase , Doenças das Plantas/prevenção & controle
17.
Thromb Haemost ; 2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37263285

RESUMO

BACKGROUND: We sought to examine the dose-response relationship between high-density lipoprotein cholesterol (HDL-C) and bleeds in coronary artery disease (CAD) patients who underwent percutaneous coronary intervention (PCI). METHODS: All the 15,250 participants were from the Personalized Antiplatelet Therapy According to CYP2C19 Genotype in Coronary Artery Disease (PRACTICE) study, which is a large, single-center, prospective cohort study based on case records and a follow-up registry performed in the First Affiliated Hospital of Xinjiang Medical University from December 2016 to October 2021. We divided all the patients into five groups according to their HDL-C levels: the ≤35 mg/dL group (n = 4,732), 35 to 45 mg/dL group (n = 6,049), 45 to 55 mg/dL group (n = 2,826), 55 and 65 mg/dL group (n = 1,117), and >65 mg/dL group (n = 526). The incidence of bleeds, mortality, ischemic events, and net adverse clinical events (NACEs) among the five groups was compared. RESULTS: A total of 713 bleeds, 1,180 ischemic events, 456 deaths, and 1,893 NACEs were recorded during the up to 60-month follow-up period. After adjusting for confounders, we observed a nonlinear relation for bleeds, with the highest risk at intermediate HDL-C levels (45-55 mg/dL). We also identified a dose-response relationship for ischemic events. A threshold value of HDL-C ≤35 mg/dL (adjusted hazard ratio = 0.560, 95% confidence interval: 0.360-0.872, p = 0.010) was associated with a decreased risk for bleeds in the multivariable Cox regression model. The results were consistent in multiple sensitivity analyses and propensity score-matching analysis. CONCLUSION: In the present study, a nonlinear association was identified between HDL-C levels and bleeds in CAD patients who underwent PCI, with a higher risk at intermediate levels. However, further multicenter studies are warranted.

18.
Molecules ; 28(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37175151

RESUMO

Ecdysone receptor (EcR) and chitinase play a critical role in the molting stage of insect pests. Each of them is considered a promising target for the development of novel insect growth regulators (IGRs). In the present paper, a total of 24 (23 novel) hexacyclic pyrazolamide derivatives were designed and synthesized by reducing the heptacycle and inserting small flexible linkers on the basis of the previously discovered dual-target compound D-27 acting simultaneously on EcR and Ostrinia furnacalis chitinase (OfChtI). Their insecticidal activities against Plutella xylostella, Spodoptera frugiperda, and Ostrinia furnacalis larvae were evaluated. The results revealed that the insecticidal activity was not significantly enhanced when the heptacycle on the pyrazole ring was reduced to a hexacycle. However, the insertion of an additional methylene spacer between the substituted phenyl ring and the amide bond can improve the insecticidal activity. Among the derivatives, the most potent compound, 6j, exhibited promising insecticidal activities against P. xylostella and S. frugiperda. Further protein binding assays and molecular docking indicated that 6j could target both EcR and OfChtI, and is a potential lead compound for IGRs. The present work provides valuable clues for the development of new dual-target IGRs.


Assuntos
Desenho de Fármacos , Insetos , Inseticidas , Hormônios Juvenis , Animais , Quitinases/antagonistas & inibidores , Inseticidas/síntese química , Inseticidas/química , Inseticidas/farmacologia , Hormônios Juvenis/síntese química , Hormônios Juvenis/química , Hormônios Juvenis/farmacologia , Simulação de Acoplamento Molecular , Insetos/efeitos dos fármacos , Insetos/crescimento & desenvolvimento
19.
Pest Manag Sci ; 79(10): 3773-3784, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37203559

RESUMO

BACKGROUND: Laccase is a key enzyme in the fungal 1,8-dihydroxynaphthalene (DHN) melanin biosynthesis pathway, which is a potential target for the control of pathogenic fungi. In our previous work, compound a2 was found with higher inhibition activity against laccase and antifungal activity than laccase inhibitor PMDD-5Y. The introduction of hydrogen-bonded receptors in the amino part was found to be beneficial in improving laccase inhibitory activity by target-based-biological rational design. In this work, the hydrogen-bonded receptors morpholine and piperazine were introduced for structure optimization to enhancing biological activity. RESULTS: Enzyme activity tests indicated that all target compounds had inhibitory activity against laccase, and some compounds exhibited better activity against laccase than a2, it was further verified that the introduction of hydrogen-bonded receptors in the amino portion could enhance the laccase inhibitory activity of target compounds. Most compounds showed excellent antifungal activities in vitro. Compound m14 displayed good activity against Magnaporthe oryzae both in vitro and in vivo. The scanning electron microscopy (SEM) analysis showed that the mycelium of M. oryzae treated with m14 were destroyed. Molecular docking revealed the binding mode between laccase and target compounds. CONCLUSION: Thirty-eight compounds were synthesized and showed good inhibitory activity against laccase, the introduction of morpholine and piperazine in the amino part was beneficial to improve antifungal activity and laccase activity. Further validation of laccase as a potential target for rice blast control, while m14 can be used as a candidate compound for the control of rice blast. © 2023 Society of Chemical Industry.


Assuntos
Antifúngicos , Magnaporthe , Antifúngicos/química , Lacase/metabolismo , Simulação de Acoplamento Molecular , Morfolinas/metabolismo , Piperazinas/metabolismo
20.
J Agric Food Chem ; 71(22): 8345-8355, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37249178

RESUMO

Insect growth regulators (IGRs) disrupt normal development of physiological processes in insects and are recognized as green insecticides. Insect chitinases play a crucial role in cuticle degradation during molting, and OfChtI, OfChtII, and OfChi-h are the prospective targets for discovering new insecticides as IGRs. In our previous study, we identified the lead compound a12 as a promising multitarget inhibitor. Herein, we used the binding modes of a12 with three chitinases to recognize the critical interactions and residues favorable to the bioactivity. Subsequently, to improve the bioactivity of inhibitors via enhanced the interactions with important residues, a series of benzo[d][1,3]dioxole-6-benzamide derivatives were rationally designed and synthesized, and their inhibitory activities against Ostrinia furnacalis (O. furnacalis) chitinases, as well as insecticidal activities against O. furnacalis and Plutella xylostella (P. xylostella) were investigated. Among them, compound d29 acted simultaneously on OfChtI, OfChtII, and OfChi-h with Ki values of 0.8, 11.9, and 2.3 µM, respectively, a significant improvement over the inhibitory activity of the lead compound a12. Moreover, d29 exhibited superior activity than a12 against two lepidopteran pests by interfering with normal insect growth and molting, indicating that d29 is a potential lead candidate for novel IGRs with a multichitinase mechanism. The present study revealed that simultaneous inhibition on multiple chitinases could achieve excellent insecticidal activity. The elucidation of inhibition mechanisms and molecular conformations illustrated the interactions with the three chitinases, as well as the discrepancy in bioactivity, which will be beneficial for future work to improve the potency of bioactivity as IGRs for pest control in sustainable agriculture.


Assuntos
Quitinases , Inseticidas , Mariposas , Animais , Inseticidas/farmacologia , Inseticidas/química , Mariposas/metabolismo , Insetos/metabolismo , Quitinases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...