Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38732921

RESUMO

In the context of construction and demolition waste exacerbating environmental pollution, the lack of recycling technology has hindered the green development of the industry. Previous studies have explored robot-based automated recycling methods, but their efficiency is limited by movement speed and detection range, so there is an urgent need to integrate drones into the recycling field to improve construction waste management efficiency. Preliminary investigations have shown that previous construction waste recognition techniques are ineffective when applied to UAVs and also lack a method to accurately convert waste locations in images to actual coordinates. Therefore, this study proposes a new method for autonomously labeling the location of construction waste using UAVs. Using images captured by UAVs, we compiled an image dataset and proposed a high-precision, long-range construction waste recognition algorithm. In addition, we proposed a method to convert the pixel positions of targets to actual positions. Finally, the study verified the effectiveness of the proposed method through experiments. Experimental results demonstrated that the approach proposed in this study enhanced the discernibility of computer vision algorithms towards small targets and high-frequency details within images. In a construction waste localization task using drones, involving high-resolution image recognition, the accuracy and recall were significantly improved by about 2% at speeds of up to 28 fps. The results of this study can guarantee the efficient application of drones to construction sites.

2.
Sensors (Basel) ; 24(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38400378

RESUMO

Computer vision (CV)-based recognition approaches have accelerated the automation of safety and progress monitoring on construction sites. However, limited studies have explored its application in process-based quality control of construction works, especially for concealed work. In this study, a framework is developed to facilitate process-based quality control utilizing Spatial-Temporal Graph Convolutional Networks (ST-GCNs). To test this model experimentally, we used an on-site collected plastering work video dataset to recognize construction activities. An ST-GCN model was constructed to identify the four primary activities in plastering works, which attained 99.48% accuracy on the validation set. Then, the ST-GCN model was employed to recognize the activities of three extra videos, which represented a process with four activities in the correct order, a process without the activity of fiberglass mesh covering, and a process with four activities but in the wrong order, respectively. The results indicated that activity order could be clearly withdrawn from the activity recognition result of the model. Hence, it was convenient to judge whether key activities were missing or in the wrong order. This study has identified a promising framework that has the potential to the development of active, real-time, process-based quality control at construction sites.

3.
Sensors (Basel) ; 23(23)2023 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-38067797

RESUMO

Efficient measurement of labor input is a critical aspect of on-site control and management in construction projects, as labor input serves as the primary and direct determinant of project outcomes. However, conventional manual inspection methods are off-line, tedious, and fail to capture their effectiveness. To address this issue, this research presents a novel method that leverages Inertial Measurement Unit (IMU) sensors attached to hand tools during construction activities to measure labor input in a timely and precise manner. This approach encompasses three steps: temporal-spatial feature extraction, self-similarity matrix calculation, and local specific structure identification. The underlying principle is based on the hypothesis that repetitive use data from hand tools can be systematically collected, analyzed, and converted into quantitative measures of labor input by the automatic recognition of repetition patterns. To validate this concept and assess its feasibility for general construction activities, we developed a preliminary prototype and conducted a pilot study focusing on rotation counting for a screw-connection task. A comparative analysis between the ground truth and the predicted results obtained from the experiments demonstrates the effectiveness and efficiency of measuring labor input using IMU sensors on hand tools, with a relative error of less than 5%. To minimize the measurement error, further work is currently underway for accurate activity segmentation and fast feature extraction, enabling deeper insights into on-site construction behaviors.


Assuntos
Projetos Piloto , Rotação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...