Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Res (Camb) ; 12(5): 843-852, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37915474

RESUMO

Arsenic exposure is a public health concern worldwide. Skin damage, as a typical lesion of arsenic exposure, the mechanism is still unknown. Studies have found that cellular senescence plays a key role in arsenic-induced skin damage, and the previous research found that the ERK/CEBPB signaling pathway may be an important molecular event of arsenic-induced skin cell senescence, but its specific mechanism is unknown. In this study, genetic engineering technology was used to construct stable HaCaT cell lines, and the role and mechanism of ERK/CEBPB signaling pathway in arsenic-induced HaCaT cell senescence were verified by knockdown and overexpression of ERK and CEBPB in both forward and backward. It was found that knockdown of CEBPB or ERK can downregulate the ERK/CEBPB signaling pathway and reduce arsenic-induced skin cell senescence. In contrast to knockdown, overexpression of CEBPB or ERK can upregulate the ERK/CEBPB signaling pathway and aggravate the senescence of skin cells caused by arsenic. These findings suggest that sodium arsenite can further promote SASP secretion and the expression of p53, p21 and p16 INK4a by activating the ERK/CEBPB signaling pathway, induce cell cycle arrest and trigger cellular senescence.

2.
Environ Toxicol ; 38(12): 2867-2880, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37565747

RESUMO

Arsenic exposure is a major environmental public health challenge worldwide. As typical manifestations for arsenic exposure, the pathogenesis of arsenic-induced skin lesions has not been fully elucidated, as well as the lack of effective control measures. In this study, we first determined the short-term and high-dose arsenic exposure can increase the apoptosis rates, while long-term low-dose arsenic exposure decrease the apoptosis rates. Then, the HaCaT cells with knockdown and overexpression of CCAAT-enhancer-binding protein ß (CEBPB) and extracellular signal-regulated kinase (ERK) were constructed. The results demonstrate that knockdown of CEBPB and ERK can reduce NaAsO2 -induced cell apoptosis by inhibiting ERK/CEBPB signaling pathway and vice versa. Further cells were treated with Kaji-Ichigoside F1 (KF1). The results clearly show that KF1 can decrease the arsenic-induced cell apoptosis rates and the expression of ERK/CEBPB signaling pathway-related genes. These results provide evidence that ERK/CEBPB signaling pathway acts as a double-edged sword in arsenic-induced skin damage. Another interesting finding was that KF1 can alleviate arsenic-induced skin cell apoptosis by inhibiting the ERK/CEBPB signaling pathway. This study will contribute to a deeper understanding of the mechanisms of arsenic-induced skin cell apoptosis, and our findings will help to identify a potential food-borne intervention in arsenic detoxification.


Assuntos
Arsênio , MAP Quinases Reguladas por Sinal Extracelular , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Arsênio/toxicidade , Transdução de Sinais , Apoptose , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...