Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Med Imaging ; 23(1): 149, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803293

RESUMO

BACKGROUND: To explore the feasibility of low-dose computed tomography (LDCT) with asynchronous quantitative computed tomography (asynchronous QCT) for assessing the volumetric bone mineral density (vBMD). METHODS: 416 women patients, categorized into 4 groups, were included and underwent chest CT examinations combined with asynchronous QCT, and CT scanning dose protocols (LDCT or CDCT) were self-determined by the participants. Radiation dose estimations were retrieved from patient protocols, including volume CT dose index (CTDIvol) and dose-length-product (DLP), and then calculated effective dose (ED). Delimiting ED by 1.0 mSv, chest CT examinations were categorized into 2 groups, LDCT group and CDCT group. vBMD of T12-L2 was obtained by transferring the LDCT and CDCT images to the QCT workstation, without extra radiation. RESULTS: There was no difference of vBMD among 4 age groups in LDCT group (P = 0.965), and no difference in CDCT group (P = 0.988). In LDCT group and CDCT group, vBMD was not correlated to mAs, CTDIvol and DLP (P > 0.05), respectively. Between LDCT group and CDCT group, there was no difference of vBMD (P ≥ 0.480), while differences of mAs, CTDIvol and DLP. CONCLUSION: There was no difference of vBMD between LDCT group and CDCT group and vBMD was not correlated to mAs. While screening for diseases such as lung cancer and mediastinal lesions, LDCT combined with asynchronous QCT can be also used to assess vBMD simultaneously with no extra imaging equipment, patient visit time, radiation dose and no additional economic cost.


Assuntos
Densidade Óssea , Tomografia Computadorizada por Raios X , Humanos , Feminino , Estudos de Viabilidade , Tomografia Computadorizada por Raios X/métodos , Doses de Radiação
2.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1868(10): 159369, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37582428

RESUMO

Brown adipose tissue (BAT) is thermogenic, expressing high levels of uncoupling protein-1 to convert nutrient energy to heat energy, bypassing ATP synthesis. BAT is a promising therapeutic target for treatment of obesity and type 2 diabetes since it converts fatty acids into heat but mechanisms controlling brown adipogenesis remain unclear. Knockdown of acetyl-Coenzyme A acetyltransferase 1 (ACAT1) in C3H10T1/2 cells suppressed brown adipocyte maturation during the current study and ACAT1 overexpression promoted brown adipocyte maturation. The downstream target of AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor gamma coactivator-1-α (PGC1α), was involved in the action of ACAT1 on brown adipocyte maturation. ACAT1 overexpression enhanced AMPK phosphorylation and promoted PGC1α expression. It is suggested that ACAT1 promotes brown adipocyte maturation by activating the AMPK-PGC1α signaling pathway.


Assuntos
Adipogenia , Diabetes Mellitus Tipo 2 , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Tecido Adiposo Branco/metabolismo , Transdução de Sinais , Coenzima A/metabolismo
3.
J Mol Cell Biol ; 15(5)2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-37253620

RESUMO

To facilitate survival, replication, and dissemination, the intracellular pathogen Legionella pneumophila relies on its unique type IVB secretion system (T4SS) to deliver over 330 effectors to hijack host cell pathways in a spatiotemporal manner. The effectors and their host targets are largely unexplored due to their low sequence identity to the known proteins and functional redundancy. The T4SS effector SidN (Lpg1083) is secreted into host cells during the late infection period. However, to the best of our knowledge, the molecular characterization of SidN has not been studied. Herein, we identified SidN as a nuclear envelope-localized effector. Its structure adopts a novel fold, and the N-terminal domain is crucial for its specific subcellular localization. Furthermore, we found that SidN is transported by eukaryotic karyopherin Importin-13 into the nucleus, where it attaches to the N-terminal region of Lamin-B2 to interfere with the integrity of the nuclear envelope, causing nuclear membrane disruption and eventually cell death. Our work provides new insights into the structure and function of an L. pneumophila effector protein, and suggests a potential strategy utilized by the pathogen to promote host cell death and then escape from the host for secondary infection.


Assuntos
Legionella pneumophila , Legionella pneumophila/metabolismo , Laminas/metabolismo
4.
Quant Imaging Med Surg ; 13(4): 2278-2286, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37064392

RESUMO

Background: To explore the feasibility of the 9 zonal trabecular volumetric bone mineral density (trabecular vBMD) method in the first lumbar vertebral body (L1) and to assess the zonal trabecular vBMD distribution of L1 in women aged 50-80 years. Methods: A total of 578 women patients underwent a quantitative computed tomography (CT) scan of the L1 vertebra, and these patients were categorized into 3 age subgroups with 10-year intervals. L1 was segmented into 9 zones, based on which, L1 was then divided into 6 regions [i.e., vBMD-anterior (vBMD-A), vBMD-medial (vBMD-M), and vBMD-posterior (vBMD-P) from the ventral to the dorsal side, vBMD-upper (vBMD-U), vBMD-medial (vBMD-M'), and vBMD-lower (vBMD-L) from the head to the foot]. Independent samples t-test, intraclass correlation coefficient (ICC), and one-way analysis of variance (ANOVA) were used for statistical analyses. Results: There were no significant differences of the 9 zonal vBMDs measured by the 2 analysts (P≥0.638), and ICCs were all greater than or equal to 0.990. There was significant difference of global vBMD among the 3 age groups (P<0.001), and so as to the 9 zonal vBMDs among the 3 age groups (P<0.001). Age was negatively correlated with global vBMD and the 9 zonal vBMDs (P<0.001). There were significant differences among vBMD-A, vBMD-M, and vBMD-P (P<0.001), and vBMD-A and vBMD-M were both lower than vBMD-P. There were significant differences among vBMD-U, vBMD-M', and vBMD-L (P<0.001), and vBMD-U and vBMD-L were both lower than vBMD-M'. Conclusions: The 9 zonal trabecular vBMD method of L1 is stable and feasible, and the 9 zonal trabecular vBMD method may quantitatively explain osteoporotic vertebral deformity from the perspective of vBMD in middle-aged and elderly women.

5.
Bioresour Technol ; 373: 128717, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36773812

RESUMO

This study was aimed at exploring the effect of antagonism of Trichoderma reesei (T.r) and Phanerochaete chrysosporium (P.c) on humification during fermentation of rice (RS) and canola straw (CS). Results showed that exogeneous fungi accelerated straw degradation and enzyme activities of CMCase, xylanase and LiP. P.c inhibited the activity of LiP when co-existing with T.r beginning, it promoted the degradation of lignin and further increased the production of humus-like substances (HLS) and humic-like acid (HLA) in later fermentation when nutrients were insufficient. The HLS of RTP was 54.9 g/kg RS, higher than the other treatments, and displayed more complex structure and higher thermostability. Brucella and Bacillus were the main HLA bacterial producers. P.c was the HLA fungal producer, while T.r assisted FLA and polyphenol transformation. Therefore, RTP was recommended to advance technologies converting crop straw into humus resources.


Assuntos
Phanerochaete , Trichoderma , Phanerochaete/metabolismo , Solo , Antibiose , Lignina/metabolismo , Trichoderma/metabolismo
6.
Exp Gerontol ; 173: 112082, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36621698

RESUMO

This study aimed to investigate the effects and mechanisms of osteocalcin on autophagy in myoblasts, as well as its possible therapeutic effects in aging muscle. Starved murine myoblast C2C12 cells with or without interleukin (IL)-6 siRNA were treated with osteocalcin. Expression of the autophagy protein marker LC3, as well as IL-6 and phosphorylated STAT3 were detected by immunoblotting, immunofluorescence, or immunohistochemistry. Autophagosomes were observed with transmission electron microscopy. Levels of reactive oxygen species (ROS) were detected by flow cytometry. Fasted young mice were injected intraperitoneally with osteocalcin, with or without the JAK inhibitor CP-690550 to inhibit IL-6 signaling. Older mice were treated with osteocalcin and muscle mass, grip strength and muscle structure were assessed. The results revealed that compared to control and serum-starved cells, osteocalcin treatment significantly increased the relative expression of LC3-II/LC3-I protein, the numbers of autophagosomes, and levels of intracellular ROS. Osteocalcin injection in mice also resulted in increased relative LC3-II/LC3-I protein expression and autophagosome numbers. Osteocalcin treatment significantly increased the secretion of IL-6 in muscle cells and tissue, and activated STAT3 signaling. Moreover, knockdown of IL-6 or blocking IL-6 signaling inhibited the phosphorylation of STAT3, and further inhibited autophagy in starved myoblasts and fasting-treated murine muscle tissue. In addition, osteocalcin treatment significantly increased muscle mass and grip strength in both aged mice and aged fasting mice. In conclusion, the inhibition of osteocalcin on muscle cell aging is accompanied by the induction of IL-6-STAT3-dependent autophagy, indicating osteocalcin might be a promising therapeutic candidate for aging-related myopathies.


Assuntos
Autofagia , Interleucina-6 , Osteocalcina , Animais , Camundongos , Envelhecimento , Autofagia/efeitos dos fármacos , Interleucina-6/metabolismo , Células Musculares , Osteocalcina/farmacologia , Espécies Reativas de Oxigênio , Fator de Transcrição STAT3/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo
7.
BMC Musculoskelet Disord ; 23(1): 575, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35701750

RESUMO

BACKGROUND: To explore the vertebral deformity angle (VD angle) of 1st lumbar vertebral body (L1) in elderly women, investigate the influence of VD on vertebral stiffness (VS) by biomechanical analysis using quantitative computed tomography-based finite element analysis (QCT-FEA). METHODS: Two hundred seventy eight participants were recruited, and underwent QCT scan. Measured VD angles of L1, and constructed QCT-FEA models of L1 with the minimum (0.59°), median (5.79°) and maximum (11.15°) VD angles, respectively. Loads in two directions were applied on the upper edge of L1 with a force of 700 N, and vertebral stiffness (VS) was defined as the ratio of 700 N and displacement at the superior reference point: (1) perpendicular to the upper edge of L1 (defined as VS-U); (2) perpendicular to the lower edge of L1(defined as VS-L). RESULTS: Age was very weak positively correlated with VD angle, moderate negatively correlated with vBMD, and moderate negatively correlated with VS (P < 0.05). VS-U was significantly different among three VD angles, so was VS-L (P < 0.001). VS-U was higher than VS-L in 5.79° and 11.15° VD angles (P < 0.05), however no difference in 0.59° VD angles (P > 0.10). CONCLUSIONS: VD angle of L1 was slightly increased with age and not correlated with vBMD, and VS was moderate negatively correlated with age, showing that the vertebral body was more likely to fracture with aging. VS-U and VS-L were gradually decreased with the increase of VD angle, and VS-L was lower than VS-U with the increase of VD angle, which showed that vertebral body was more prone to fracture when the load was perpendicular to the lower edge of the vertebral body as the VD angle increasing.


Assuntos
Fraturas da Coluna Vertebral , Idoso , Fenômenos Biomecânicos , Densidade Óssea , Feminino , Análise de Elementos Finitos , Humanos , Vértebras Lombares/diagnóstico por imagem , Fraturas da Coluna Vertebral/diagnóstico por imagem , Tomografia Computadorizada por Raios X
8.
iScience ; 25(4): 104085, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35372814

RESUMO

Hepatic lipid accumulation is closely associated with nonalcoholic fatty liver disease (NAFLD). Adipose-triglyceride-lipase (ATGL) regulates triglyceride hydrolysis and maintains energy homeostasis in hepatocytes. Identifying key factors in the regulation of ATGL will help tackle hepatic lipid accumulation and related metabolic diseases. Herein, we demonstrate that syntaxin11 (STX11), a member of the SNARE family, generally expressed in immune cells, mediates lipid metabolism by binding to ATGL and inhibiting lipid droplet degradation and lipid autophagy in hepatocytes. Our data show that the C-terminal of STX11 and the patatin domain-containing segment of ATGL have direct physical interactions. Thus, STX11 overexpression prevents spatial translocation of ATGL onto LDs by recruitment of ATGL to the ER. Conversely, STX11 deficiency in hepatocytes promotes lipid hydrolysis, and the ATGL-SIRT1 signaling pathway enhances lipophagy. Overall, this study uncovered that the regulation of lipolysis and lipophagy is achieved by STX11 through the attenuation of ATGL action in hepatocytes.

9.
Artigo em Inglês | MEDLINE | ID: mdl-34896618

RESUMO

Fatty acids have a high turnover rate in cancer cells to supply energy for tumor growth and proliferation. Lipolysis is particularly important for the regulation of fatty acid homeostasis and in the maintenance of cancer cells. In the current study, we explored how 2,4-Dienoyl-CoA reductase (DECR1), a short-chain dehydrogenase/reductase associated with mitochondrial and cytoplasmic compartments, promotes cancer cell growth. We report that DECR1 overexpression significantly reduced the triglyceride (TAG) content in HeLa cells; conversely, DECR1 silencing increased intracellular TAG content. Subsequently, our experiments demonstrate that DECR1 promotes lipolysis via effects on hormone sensitive lipase (HSL). The direct interaction of DECR1 with HSL increases HSL phosphorylation and activity, facilitating the translocation of HSL to lipid droplets. The ensuing enhancement of lipolysis thus increases the release of free fatty acids. Downstream effects include the promotion of cervical cancer cell migration and growth, associated with the enhanced levels of p62 protein. In summary, high levels of DECR1 serves to enhance lipolysis and the release of fatty acid energy stores to support cervical cancer cell growth.


Assuntos
Lipólise
10.
J Food Sci Technol ; 58(6): 2109-2120, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33967309

RESUMO

To determine the differences in the characteristic volatile compounds between winemaking areas in the Xinjiang region, this study was conducted by sampling Cabernet Sauvignon grapes from four winemaking areas in Xinjiang, named Tianshanbeilu, Yili, Yanqi, and Hami. After undergoing the same alcoholic fermentation treatment, the wines from the four areas were subjected to GC-MS and sensory analysis. The results showed that fifty aromatic compounds (including higher alcohols, esters, acids, terpenes, aldehydes/ketones, et al.) were identified and quantified. Interestingly, the terpene and phenylalanine derivative contents of the wines from northern Xinjiang were higher than those from the south. Additionally, four vineyards highly contributed to the development of key volatile compounds in the Xinjiang region. Sensory analysis showed that the wines from northern Xinjiang were impressive with a flowery and fruity aroma and the wines from southern Xinjiang had a stronger wine body and astringency.

11.
Infect Drug Resist ; 14: 1467-1479, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33888998

RESUMO

PURPOSE: The multiple-drug resistant Escherichia coli are among the deadliest pathogens causing life-threatening infections. This study was planned to determine the molecular epidemiology of mcr-1, bla KPC-2, and bla NDM-1 harboring clinically isolated E. coli from Pakistan. METHODS: In total, 545 strains of E. coli from clinical samples were collected from June 2018 to September 2019. All the isolates were screened for colistin-resistance, extended-spectrum-ß-lactamases (ESBL), and carbapenemases through the micro-dilution method, Double-Disk-Synergy-Test (DDST), and Modified-Hodge-Test (MHT). The detection, sequence-typing, conjugal transfer, S1-PFGE, plasmid-replicon-typing, and southern-blotting for mcr, ESBL, and carbapenemase-encoding genes were performed. FINDINGS: A total of four (0.73%) colistin-resistant strains carrying alongside mcr-1 and bla CTX-M-15 genes, three of these strains also had the bla TEM-1 gene. The presence of ESBL genes was detected in 139 (25.5%) isolates harboring bla CTXM-15 (74.82%), bla TEM (34.53%), bla SHV (28.06%) and bla OXA-1 (28.78%). In 129 carbapenemase-producers, 35.83% possessed bla NDM-1, 26.67% bla KPC-2, 8.3% bla OXA-48, 25% bla VIM-1, and 20.83% bla IMP-1 genes. The sequence typing revealed that mcr-1 harboring isolates belonged to ST405, ST117, and ST156. Fifty percent of bla KPC-2 and 48.83% of bla NDM-1 were found on ST131 and ST1196, respectively. Two rare types of STs, ST7584, and ST8671 were also identified in this study. The mcr-1 gene was located on Incl2 (60-kb) plasmid. The bla KPC-2 was present on (140-kb) IncH12, (100-kb) IncN, (90-kb) Incl1, while bla NDM-1 was located on (70-kb) IncFIIK, (140-kb) IncH12, (100-kb) IncN, (60-kb) IncA/C, and (45-kb) IncFII plasmids, which were successfully trans-conjugated. Among the plasmid types, the Incl1 carrying bla KPC-2, IncH12 harboring bla KPC-2 and bla NDM-1, and IncFIIK carrying bla NDM-1 were for the first time detected in Pakistan. CONCLUSION: The mcr-1, bla KPC-2, and bla NDM-1 genes finding in various clonal and plasmids types indicate that a substantial selection of the resistance genes had occurred in our clinical strains.

12.
Microorganisms ; 9(5)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33924918

RESUMO

The New Delhi Metallo-ß-lactamase (NDM) is among the most threatening forms of carbapenemases produced by K. pneumoniae, well-known to cause severe worldwide infections. The molecular epidemiology of blaNDM-1-harboring K. pneumoniae is not well elucidated in Pakistan. Herein, we aim to determine the antibiotics-resistance profile, genes type, molecular type, and plasmid analysis of 125 clinically isolated K. pneumoniae strains from urine samples during July 2018 to January 2019 in Pakistan. A total of 34 (27.2%) K. pneumoniae isolates were carbapenemases producers, and 23 (18.4%) harbored the blaNDM-1 gene. The other carbapenemases encoding genes, i.e., blaIMP-1 (7.2%), blaVIM-1 (3.2%), and blaOXA-48 (2.4%) were also detected. The Multi Locus Sequence Typing (MLST) results revealed that all blaNDM-1-harboring isolates were ST11. The other sequence types detected were ST1, ST37, and ST105. The cluster analysis of Xbal Pulsed Field Gel Electrophoresis (PFGE) revealed variation amongst the clusters of the identical sequence type isolates. The blaNDM-1 gene in all of the isolates was located on a 45-kb IncX3 plasmid, successfully transconjugated. For the first time, blaNDM-1-bearing IncX3 plasmids were identified from Pakistan, and this might be a new primary vehicle for disseminating blaNDM-1 in Enterobacteriaceae as it has a high rate of transferability.

13.
BMC Infect Dis ; 21(1): 244, 2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33676421

RESUMO

BACKGROUND: During the last six decades, extensive use of antibiotics has selected resistant strains, increasing the rate of fatal infectious diseases, and exerting an economic burden on society. This situation is widely accepted as a global problem, yet its degree is not well elucidated in many regions of the world. Up till now, no systemic analysis of Antimicrobial resistance (AMR) in Pakistan has been published. The current study aims to describe the antibiotic-resistance scenario of Pakistan from human samples of the last 10 y, to find the gaps in surveillances and methodology and recommendations for researchers and prescribers founded on these outcomes. METHODS: Original research articles analyzed the pattern of Antibiotic resistance of any World Health Organization (WHO) enlisted priority pathogens in Pakistan (published onward 2009 till March 2020), were collected from PubMed, Google scholar, and PakMedi Net search engines. These articles were selected based on predefined inclusion and exclusion criteria. Data about the study characteristics and antibiotic-resistance for a given bacterium were excluded from literature. Antibiotic resistance to a particular bacterium was calculated as a median resistance with 95% Confidence Interval (CI). RESULTS: Studies published in the last 10 y showed that Urinary Tract Infection (UTI) is the most reported clinical diagnosis (16.1%) in Pakistan. E. coli were reported in 28 (30.11%) studies showing high resistance to antibiotics' first line. Methicillin-resistant Staphylococcus aureus (MRSA) was found in 49% of S. aureus' total reported cases. Phenotypic resistance pattern has mostly been evaluated by Disk Diffusion Method (DDM) (82.8%), taken Clinical Laboratory Standards Institute (CLSI) as a breakpoint reference guideline (in 79.6% studies). Only 28 (30.11%) studies have made molecular identification of the resistance gene. blaTEM (78.94% in Shigella spp) and blaNDM-1 (32.75% in Klebsiella spp) are the prominent reported resistant genes followed by VanA (45.53% in Enterococcus spp), mcr-1 (1.61% in Acinetobacter spp), and blaKPC-2 (31.67% in E. coli). Most of the studies were from Sindh (40.86%), followed by Punjab (35.48%), while Baluchistan's AMR data was not available. CONCLUSION: Outcomes of our study emphasize that most of the pathogens show high resistance to commonly used antibiotics; also, we find gaps in surveillances and breaches in methodological data. Based on these findings, we recommend the regularization of surveillance practice and precise actions to combat the region's AMR.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana , Animais , Farmacorresistência Bacteriana/efeitos dos fármacos , Humanos , Paquistão
14.
Micromachines (Basel) ; 11(12)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260653

RESUMO

Lung-on-a-chip devices could provide new strategies for a biomimetic lung cell microenvironment and construction of lung disease models in vitro, and are expected to greatly promote the development of drug evaluation, toxicological detection, and disease model building. In this study, we developed a novel poly (lactic-co-glycolic acid) (PLGA) nanofiber/polydimethylsiloxane (PDMS) microporous composite membrane-sandwiched lung-on-a-chip to perform anti-tumor drug testing. The composite membrane was characterized, and the results showed that it was permeable to molecules and thus could be used to study small-molecule drug diffusion. In addition, the microchip could apply perfusion fluids to simulate blood flow under extremely low fluid shear stress, and could also simulate the spherical-like shape of the alveoli by deformation of the composite membrane. Using this chip, we evaluated the anti-tumor drug efficacy of gefitinib in two kinds of non-small cell lung cancer cells, the lung adenocarcinoma NCI-H1650 cell line and the large cell lung cancer NCI-H460 cell line. We further probed the resistance of NCI-H460 cells to gefitinib under normoxic and hypoxic conditions. The established composite membrane-sandwiched lung chip can simulate more biochemical and biophysical factors in the lung physiological and pathological microenvironment, and it has important applications in the personalized treatment of lung tumors. It is expected to play a potential role in clinical diagnosis and drug screening.

15.
Biomicrofluidics ; 13(3): 031501, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31263514

RESUMO

The lung is the primary respiratory organ of the human body and has a complicated and precise tissue structure. It comprises conductive airways formed by the trachea, bronchi and bronchioles, and many alveoli, the smallest functional units where gas-exchange occurs via the unique gas-liquid exchange interface known as the respiratory membrane. In vitro bionic simulation of the lung or its microenvironment, therefore, presents a great challenge, which requires the joint efforts of anatomy, physics, material science, cell biology, tissue engineering, and other disciplines. With the development of micromachining and miniaturization technology, the concept of a microfluidics-based organ-on-a-chip has received great attention. An organ-on-a-chip is a small cell-culture device that can accurately simulate tissue and organ functions in vitro and has the potential to replace animal models in evaluations of drug toxicity and efficacy. A lung-on-a-chip, as one of the first proposed and developed organs-on-a-chip, provides new strategies for designing a bionic lung cell microenvironment and for in vitro construction of lung disease models, and it is expected to promote the development of basic research and translational medicine in drug evaluation, toxicological detection, and disease model-building for the lung. This review summarizes current lungs-on-a-chip models based on the lung-related cellular microenvironment, including the latest advances described in studies of lung injury, inflammation, lung cancer, and pulmonary fibrosis. This model should see effective use in clinical medicine to promote the development of precision medicine and individualized diagnosis and treatment.

16.
PLoS One ; 14(5): e0216553, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31091257

RESUMO

Autophagy is an intracellular catabolic system. It delivers cellular components to lysosomes for degradation and supplies nutrients that promote cell survival under stress conditions. Although much is known regarding starvation-induced autophagy, the regulation of autophagy by cellular energy level is less clear. BRUCE is an ubiquitin conjugase and ligase with multi-functionality. It has been reported that depletion of BRUCE inhibits starvation-induced autophagy by blockage of the fusion step. Herein we report a new function for BRUCE in the dual regulation of autophagy and cellular energy. Depletion of BRUCE alone (without starvation) in human osteosarcoma U2OS cells elevated autophagic activity as indicted by the increased LC3B-II protein and its autophagic puncta as well as further increase of both by chloroquine treatment. Such elevation results from enhanced induction of autophagy since the numbers of both autophagosomes and autolysosomes were increased, and recruitment of ATG16L onto the initiating membrane structure phagophores was increased. This concept is further supported by elevated lysosomal enzyme activities. In contrast to starvation-induced autophagy, BRUCE depletion did not block fusion of autophagosomes with lysosomes as indicated by increased lysosomal cleavage of the GFP-LC3 fusion protein. Mechanistically, BRUCE depletion lowered the cellular energy level as indicated by both a higher ratio of AMP/ATP and the subsequent activation of the cellular energy sensor AMPK (pThr-172). The lower energy status co-occurred with AMPK-specific phosphorylation and activation of the autophagy initiating kinase ULK1 (pSer-555). Interestingly, the higher autophagic activity by BRUCE depletion is coupled with enhanced cisplatin resistance in human ovarian cancer PEO4 cells. Taken together, BRUCE depletion promotes induction of autophagy by lowering cellular energy and activating the AMPK-ULK1-autophagy axis, which could contribute to ovarian cancer chemo-resistance. This study establishes a BRUCE-AMPK-ULK1 axis in the regulation of energy metabolism and autophagy, as well as provides insights into cancer chemo-resistance.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Autofagia , Metabolismo Energético , Proteínas Inibidoras de Apoptose/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Osteossarcoma/patologia , Neoplasias Ovarianas/patologia , Proteínas Quinases Ativadas por AMP/genética , Autofagossomos , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Sobrevivência Celular , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas Inibidoras de Apoptose/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lisossomos/metabolismo , Osteossarcoma/genética , Osteossarcoma/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Fosforilação , Transdução de Sinais , Células Tumorais Cultivadas
17.
Oncol Rep ; 41(6): 3499-3507, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31002344

RESUMO

Non­small cell lung carcinomas (NSCLC) are common and are the leading cause of cancer­associated mortality worldwide. Heptadecanoic acid (C17:0) is an odd­chain saturated fatty acid. The effect of C17:0 on lung cancer has remained elusive. The present study examined the role of C17:0 in the PC­9 NSCLC cell line and PC­9 cells with acquired­gefitinib resistance (PC­9/GR) in vitro. Cell proliferation, migration, apoptosis, fatty acid composition and the activation of relevant signaling pathways were assessed. The results indicated that C17:0 significantly inhibited cell proliferation, and migration, while promoting apoptosis in PC­9 and PC­9/GR cells. Furthermore, C17:0 enhanced the cytotoxicity of gefitinib to PC­9 and PC­9/GR cells. Mechanistical analysis indicated that the activation of the phosphoinositide 3­kinase/Akt signaling pathway was suppressed in C17:0­treated PC­9 and PC­9/GR cells. Furthermore, the addition of C17:0 led to accumulation of 10­cis­heptadecenoic acid in NSCLC cells. Collectively, the present study demonstrated that C17:0 is an effective agent against NSCLC cells in vitro and the results may imply that the intake of C17:1 or C17:0­rich food may be beneficial during the treatment of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Ácidos Graxos/farmacologia , Gefitinibe/efeitos adversos , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteína Oncogênica v-akt/genética , Fosfatidilinositol 3-Quinase/genética , Transdução de Sinais/efeitos dos fármacos
18.
Biomicrofluidics ; 13(1): 014102, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30867873

RESUMO

Three-dimensional cultures of tumor microtissues and biomimetic simulation of tumor microenvironments are of great significance in the study of tumorigenesis and development processes. In this study, a well-mesh microchip was developed to realize the formation and culture of tumor microtissues in vitro. Human lung adenocarcinoma HCC827 cells and large-cell lung cancer NCI-H460 cells were used. The size and morphology of the microtissues have been observed. In addition, we constructed an in situ three-dimensional co-culture model with tumor cell microtissues (HCC827 or NCI-H460 cells), extracellular matrix (Matrigel), and human umbilical vein endothelial cells. HCC827 microtissue epithelial-mesenchymal transition (EMT) in the established well-mesh microchip also was investigated, and the results showed that recombinant transforming growth factor could activate the Snail and Akt gene and promote migration and EMT with the decrease of E-cadherin expression for HCC827. This well-mesh microchip features simple operation and easy observation, and could provide a new method for the study of tumor cells and tumor microenvironments in vitro. Therefore, this model has potential application value in organ-on-chip technology, tissue engineering, and drug evaluation.

19.
Talanta ; 195: 158-164, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30625526

RESUMO

Pyrophosphate (PPi) played crucial roles in various fundamental physiological processes. Herein, a two-photon absorption (TPA) "On-Off-On" type benzoxazole-based fluorescence probe BN was designed and synthesized, which detected PPi through Cu2+ displacing method in situ system in aqueous medium. The on-off-on process of BN recognizing PPi was verified by mass spectra and theoretical calculations, which was successfully applied in TPA cells imaging.


Assuntos
Benzoxazóis/química , Complexos de Coordenação/química , Cobre/química , Difosfatos/análise , Corantes Fluorescentes/química , Difosfatos/química , Células HeLa , Humanos , Imagem Óptica , Solubilidade , Água/química
20.
ACS Appl Bio Mater ; 2(7): 2896-2906, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35030783

RESUMO

Seeking a versatile nanoplatform for multimodal nucleus imaging and therapy is a challenging task. General complementary bottom-up bionanotechnology for controlling a 3D supramolecular coassembly is proposed. The dual engineering interface proof-of-concept of the supramolecular architecture can be demonstrated via a genetically engineered protein dimer and plasmonically engineered graphene oxide (GO). Incorporation of anisotropic plasmonic nanoparticles as an intercalation layer among the GO 3D supramolecular architecture can provide covalent conjugation sites and simultaneously endow tunable optical properties of GO, ranging from the ultraviolet-to-near-infrared region. Interestingly, the precise design of a specific two-site mutation of the plasmid is favorable for giving an organized coassembly instead of random networks of GO, which contributes to giving continuous distinguishable enhanced Raman imaging for tracking cancer cells. Unexpectedly, penetration into the cell nucleus via the submicro 3D supramolecular coassembly exhibits an excellent nucleus therapeutic potential of cancer cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...