Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(15)2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37571029

RESUMO

Shanlan upland rice (Oryza sativa L.) is a unique upland rice variety cultivated by the Li nationality for a long time, which has good drought resistance and high utilization value in drought resistance breeding. To explore the origin of Shanlan upland rice and its genetic relationship with upland rice from other geographical sources, 214 upland rice cultivars from Southeast Asia and five provinces (regions) in southern China were used to study genetic diversity by using SSR markers. Twelve SSR primers were screened and 164 alleles (Na) were detected, with the minimum number of alleles being 8 and the maximum number of alleles being 23, with an average of 13.667. The analysis of genetic diversity and analysis of molecular variance (AMOVA) showed that the differences among the materials mainly came from the individuals of upland rice. The results of gene flow and genetic differentiation revealed the relationship between the upland rice populations, and Hainan Shanlan upland rice presumably originated from upland rice in Guangdong province, and some of them were genetically differentiated from Hunan upland rice. It can be indirectly proved that the Li nationality in Hainan is a descendant of the ancient Baiyue ethnic group, which provides circumstantial evidence for the migration history of the Li nationality in Hainan, and also provides basic data for the advanced protection of Shanlan upland rice, and the innovative utilization of germplasm resources.

2.
Genes (Basel) ; 14(5)2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37239327

RESUMO

Flax is a flowering plant cultivated for its oil and contains various unsaturated fatty acids. Linseed oil is known as the "deep-sea fish oil" of plants, and is beneficial to brain and blood lipids, among other positive effects. Long non-coding RNAs (lncRNAs) play an important role in plant growth and development. There are not many studies assessing how lncRNAs are related to the fatty acid synthesis of flax. The relative oil contents of the seeds of the variety Heiya NO.14 (for fiber) and the variety Macbeth (for oil) were determined at 5 day, 10 day, 20 day, and 30 day after flowering. We found that 10-20 day is an important period for ALA accumulation in the Macbeth variety. The strand-specific transcriptome data were analyzed at these four time points, and a series of lncRNAs related to flax seed development were screened. A competing endogenous RNA (ceRNA) network was constructed and the accuracy of the network was verified using qRT-PCR. MSTRG.20631.1 could act with miR156 on the same target, squamosa promoter-binding-like protein (SPL), to influence fatty acid biosynthesis through a gluconeogenesis-related pathway during flax seed development. This study provides a theoretical basis for future studies assessing the potential functions of lncRNAs during seed development.


Assuntos
Linho , RNA Longo não Codificante , Linho/genética , Linho/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ácidos Graxos Insaturados/metabolismo , Transcriptoma , Sementes
3.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769141

RESUMO

The cultivation of herbicide-resistant crops is an effective tool for weed management in agriculture. Weed control in flax (Linum usitatissimum L.) remains challenging due to the lack of available herbicide-resistant cultivars. In this study, a mutant resistant to acetolactate synthase (ALS)-inhibiting herbicides was obtained by ethyl methanesulphonate (EMS) mutagenesis using an elite cultivar, Longya10. Whole-plant dose-response assays revealed that, compared to Longya10, the mutant was 11.57-fold more resistant to tribenuron-methyl (TBM) and slightly resistant to imazethapyr (resistance index (mutant/Longya10) < 3). In vitro acetolactate synthase assays showed that the relative resistance of the mutant was 12.63 times more than that of Longya10. A biochemical analysis indicated that there was a Pro197Ser (relative to the Arabidopsis thaliana ALS sequence) substitution within the LuALS1, conferring high resistance to sulfonylurea herbicides in the mutant. Additionally, two cleaved amplified polymorphic sequence (CAPS) markers, BsaI-LuALS1 and EcoO109I-LuALS1, were developed based on the mutation site for marker assistant selection in breeding. Moreover, the mutant did not cause losses in natural field conditions. We find a mutant with ALS-inhibiting herbicide resistance chemically induced by EMS mutagenesis, providing a valuable germplasm for breeding herbicide-resistant flax varieties.


Assuntos
Acetolactato Sintase , Arabidopsis , Linho , Herbicidas , Linho/genética , Resistência a Herbicidas/genética , Acetolactato Sintase/genética , Melhoramento Vegetal , Mutação , Compostos de Sulfonilureia/farmacologia , Herbicidas/farmacologia
4.
Int J Biol Macromol ; 231: 123387, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36693603

RESUMO

Rice (Oryza sativa L.) is an important grain crop worldwide, and drought has become an important factor restricting rice yield. As a unique rice germplasm in Hainan (China), Shanlan upland rice has rich genetic diversity and certain advantage for breeding water-saving and drought-resistance rice. 48 varieties, including 41 Shanlan upland rice, 3 upland rice, and 4 irrigated rice varieties was cultivated in soil pots. The drought resistance was assessed at the seedling stage using the stress coefficients of seven indicators, as the D value calculating from five principal components to rank the varieties. Five cultivars with strong, medium, and low resistance, were selected for transcriptome sequencing. The results of the GSEA analysis showed that free amino acid content increased through the redistribution of energy in Shanlan upland rice to cope with drought stress. In addition, we found that Os03g0623100 was significantly up-regulated under drought stress conditions in varieties with high drought resistance, as compared with low resistance cultivars. The Os03g0623100 was predicted to interact with LEA protein in the STRING database, which may contribute to maintaining the energy metabolisms to under stress conditions. This study provides a view of Shanlan upland rice as a drought-resistant germplasm resource, and a deeper understanding of the molecular mechanism of crop drought resistance.


Assuntos
Oryza , Oryza/metabolismo , Resistência à Seca , Transcriptoma , Melhoramento Vegetal , Fenótipo , Secas
5.
BMC Genomics ; 23(1): 336, 2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35490237

RESUMO

BACKGROUND: Drought has become the major abiotic stress that causes losses in rice yields and consequently is one of the main environmental factors threatening food security. Long non-coding RNA (lncRNA) is known to play an important role in plant response to drought stress, while the mechanisms of competing endogenous RNA (ceRNA) in drought resistance in upland rice have been rarely reported. RESULTS: In our study, a total of 191 lncRNAs, 2115 mRNAs and 32 miRNAs (microRNAs) were found by strand-specific sequencing and small RNA sequencing to be differentially expressed in drought-stressed rice. Functional analysis of results indicate that they play important roles in hormone signal transduction, chlorophyll synthesis, protein synthesis and other pathways. Construction of a ceRNA network revealed that MSTRG.28732.3 may interact with miR171 in the chlorophyll biosynthesis pathway and affect the ability of plants to withstand drought stress by regulating Os02g0662700, Os02g0663100 and Os06g0105350. The accuracy of the regulatory network was verified by qRT-PCR. CONCLUSION: Our results provide a theoretical basis for future studies on the potential function of lncRNA in plant drought resistance, and they provide new genetic resources for drought-resistant rice breeding.


Assuntos
MicroRNAs , Oryza , RNA Longo não Codificante , Clorofila , Secas , MicroRNAs/genética , Oryza/metabolismo , Melhoramento Vegetal , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...