Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338664

RESUMO

Irrigation and fertilization are essential management practices for increasing forest productivity. They also impact the soil ecosystem and the microbial population. In order to examine the soil bacterial community composition and structure in response to irrigation and fertilization in a Eucalyptus plantations, a total of 20 soil samples collected from Eucalyptus plantations were analyzed using high-throughput sequencing. Experimental treatments consisting of control (CK, no irrigation or fertilization), fertilization only (F), irrigation only (W), and irrigation and fertilization (WF). The results showed a positive correlation between soil enzyme activities (urease, cellulase, and chitinase) and fertilization treatments. These enzyme activities were also significantly correlated with the diversity of soil bacterial communities in Eucalyptus plantations.. Bacteria diversity was considerably increased under irrigation and fertilization (W, F, and WF) treatments when compared with the CK treatment. Additionally, the soil bacterial richness was increased in the Eucalyptus plantations soil under irrigation (W and WF) treatments. The Acidobacteria (38.92-47.9%), Proteobacteria (20.50-28.30%), and Chloroflexi (13.88-15.55%) were the predominant phyla found in the Eucalyptus plantations soil. Specifically, compared to the CK treatment, the relative abundance of Proteobacteria was considerably higher under the W, F, and WF treatments, while the relative abundance of Acidobacteria was considerably lower. The contents of total phosphorus, accessible potassium, and organic carbon in the soil were all positively associated with fertilization and irrigation treatments. Under the WF treatment, the abundance of bacteria associated with nitrogen and carbon metabolisms, enzyme activity, and soil nutrient contents showed an increase, indicating the positive impact of irrigation and fertilization on Eucalyptus plantations production. Collectively, these findings provide the scientific and managerial bases for improving the productivity of Eucalyptus plantations.


Assuntos
Eucalyptus , Solo , Solo/química , Ecossistema , Bactérias , Proteobactérias , Acidobacteria , Carbono , Fertilização , Microbiologia do Solo
2.
Langmuir ; 40(3): 1950-1960, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-37991242

RESUMO

Core-shell hydrogel microcapsules have sparked great interest due to their unique characteristics and prospective applications in the medical, pharmaceutical, and cosmetic fields. However, complex synthetic procedures and expensive costs have limited their practical application. Herein, we designed and prepared several multichannel and multijunctional droplet microfluidic devices based on soft lithography for the effective synthesis of core-shell hydrogel microcapsules for different purposes. Additionally, two different cross-linking processes (ultraviolet (UV) exposure and interfacial polymerization) were used to synthesize different types of core-shell structured hydrogel microcapsules. Hydrogel microcapsules with gelatin methacryloyl (GelMA) as the core and polyacrylamide (PAM) as the thin shell were synthesized using UV cross-linking. Using an interfacial polymerization process, another core-shell structured microcapsule with GelMA as the core and Ca2+ cross-linked alginate with polyethylenimine (PEI) as the shell was constructed, and the core diameter and total droplet diameter were flexibly controlled by carving. Noteworthy, these hydrogel microcapsules exhibit stimuli-responsiveness and controlled release ability. Overall, a novel technique was developed to successfully synthesize various hydrogel microcapsules with core-shell microstructures. The hydrogel microcapsules possess a multilayered structure that facilitates the coassembly of cells and drugs, as well as the layered assembly of multiple drugs, to develop synergistic therapeutic regimens. These adaptable and controllable hydrogel microdroplets shall held great promise for multicell or multidrug administration as well as for high-throughput drug screening.


Assuntos
Alginatos , Hidrogéis , Hidrogéis/química , Cápsulas/química , Alginatos/química , Ácido Glucurônico/química , Ácidos Hexurônicos/química
3.
Nat Commun ; 14(1): 5142, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612305

RESUMO

Optokinetic nystagmus (OKN) assists stabilization of the retinal image during head rotation. OKN is driven by ON direction selective retinal ganglion cells (ON DSGCs), which encode both the direction and speed of global retinal slip. The synaptic circuits responsible for the direction selectivity of ON DSGCs are well understood, but those sculpting their slow-speed preference remain enigmatic. Here, we probe this mechanism in mouse retina through patch clamp recordings, functional imaging, genetic manipulation, and electron microscopic reconstructions. We confirm earlier evidence that feedforward glycinergic inhibition is the main suppressor of ON DSGC responses to fast motion, and reveal the source for this inhibition-the VGluT3 amacrine cell, a dual neurotransmitter, excitatory/inhibitory interneuron. Together, our results identify a role for VGluT3 cells in limiting the speed range of OKN. More broadly, they suggest VGluT3 cells shape the response of many retinal cell types to fast motion, suppressing it in some while enhancing it in others.


Assuntos
Retina , Células Ganglionares da Retina , Animais , Camundongos , Células Amácrinas , Inibição Psicológica , Interneurônios
4.
Adv Sci (Weinh) ; 10(9): e2207022, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36683160

RESUMO

Few-layer transition metal dichalcogenides (TMDs) and their combination as van der Waals heterostructures provide a promising platform for high-performance optoelectronic devices. However, the ultrathin thickness of TMD flakes limits efficient light trapping and absorption, which triggers the hybrid construction with optical resonant cavities for enhanced light absorption. The optical structure enriched photodetectors can also be wavelength- and polarization-sensitive but require complicated fabrication. Herein, a new-type TMD-based photodetector embedded with nanoslits is proposed to enhance light trapping. Taking ReS2 as an example, strong anisotropic Mie-type optical responses arising from the intrinsic in-plane anisotropy and nanoslit-enhanced anisotropy are discovered. Owing to the nanoslit-enhanced optical resonances and band engineering, excellent photodetection performances are demonstrated with high responsivity of 27 A W-1 and short rise/decay times of 3.7/3.7 ms. More importantly, through controlling the angle between the nanoslit orientation and the polarization direction to excite different resonant modes, polarization-sensitive photodetectors with anisotropy ratios from 5.9 to 12.6 can be achieved, representing one of the most polarization-sensitive TMD-based photodetectors. The depth and orientation of nanoslits are demonstrated crucial for optimizing the anisotropy ratio. The findings bring an effective scheme to construct high-performance and polarization-sensitive photodetectors.

5.
Neurobiol Dis ; 169: 105738, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35460869

RESUMO

Epilepsy is one of the most common neurological disorders. The X-linked gene PCDH19 is associated with sporadic and familial epilepsy in humans, typically with early-onset clustering seizures and intellectual disability in females but not in so-called 'carrier' males, suggesting that mosaic PCDH19 expression is required to produce epilepsy. To characterize the role of loss of PCDH19 function in epilepsy, we generated zebrafish with truncating pcdh19 variants. Evaluating zebrafish larvae for electrophysiological abnormalities, we observed hyperexcitability phenotypes in both mosaic and non-mosaic pcdh19+/- and pcdh19-/- mutant larvae. Thus, we demonstrate that the key feature of epilepsy-network hyperexcitability-can be modeled effectively in zebrafish, even though overt spontaneous seizure-like swim patterns were not observed. Further, zebrafish with non-mosaic pcdh19 mutation displayed reduced numbers of inhibitory interneurons suggesting a potential cellular basis for the observed hyperexcitability. Our findings in both mosaic and non-mosaic pcdh19 mutant zebrafish challenge the prevailing theory that mosaicism governs all PCDH19-related phenotypes and point to interneuron-mediated mechanisms underlying these phenotypes.


Assuntos
Epilepsia , Peixe-Zebra , Animais , Caderinas/genética , Epilepsia/genética , Feminino , Masculino , Mutação/genética , Protocaderinas
6.
Behav Sci (Basel) ; 12(3)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35323400

RESUMO

Although knowledge is arguably an organization's most important resource, many organizations still practice knowledge hiding. This study explores how an organization's motivational climate-mediated by work alienation among its members-influences knowledge hiding from the perspective of the conservation of resources (COR) theory. Specifically, we establish hypotheses that the performance and mastery climates, mediated by work alienation, have positive and negative effects on knowledge hiding, respectively. To verify these hypotheses, we conducted a survey among members of Chinese companies, through which 200 responses were collected through a two-wave panel design. The results of the analysis demonstrated that motivational climate, as an antecedent of knowledge hiding, has a significant effect on work alienation. We also found that work alienation mediated the relationship between (a) performance climate, and (b) mastery climate and knowledge hiding. Based on these findings, we discuss the research implications and limitations while suggesting directions for future studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...