Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39001490

RESUMO

Chemotherapy remains a cornerstone in lung cancer treatment, yet emerging evidence suggests that sublethal low doses may inadvertently enhance the malignancy. This study investigates the paradoxical effects of sublethal low-dose chemotherapy on non-small-cell lung cancer (NSCLC) cells, emphasizing the role of Aldo-keto reductase family 1 member B10 (AKR1B10). We found that sublethal doses of chemotherapy unexpectedly increased cancer cell migration approximately 2-fold and invasion approximately threefold, potentially promoting metastasis. Our analysis revealed a significant upregulation of AKR1B10 in response to taxol and doxorubicin treatment, correlating with poor survival rates in lung cancer patients. Furthermore, silencing AKR1B10 resulted in a 1-2-fold reduction in cell proliferation and a 2-3-fold reduction in colony formation and migration while increasing chemotherapy sensitivity. In contrast, the overexpression of AKR1B10 stimulated growth rate by approximately 2-fold via ERK pathway activation, underscoring its potential as a target for therapeutic intervention. The reversal of these effects upon the application of an ERK-specific inhibitor further validates the significance of the ERK pathway in AKR1B10-mediated chemoresistance. In conclusion, our findings significantly contribute to the understanding of chemotherapy-induced adaptations in lung cancer cells. The elevated AKR1B10 expression following sublethal chemotherapy presents a novel molecular mechanism contributing to the development of chemoresistance. It highlights the need for strategic approaches in chemotherapy administration to circumvent the inadvertent enhancement of cancer aggressiveness. This study positions AKR1B10 as a potential therapeutic target, offering a new avenue to improve lung cancer treatment outcomes by mitigating the adverse effects of sublethal chemotherapy.

2.
Nutrients ; 15(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37960146

RESUMO

Prostate cancer (PC) is the second most frequently diagnosed cancer and the fifth leading cause of cancer-related death in males worldwide. Early-stage PC patients can benefit from surgical, radiation, and hormonal therapies; however, once the tumor transitions to an androgen-refractory state, the efficacy of treatments diminishes considerably. Recently, the exploration of natural products, particularly dietary phytochemicals, has intensified in response to addressing this prevailing medical challenge. In this study, we uncovered a synergistic effect from combinatorial treatment with lovastatin (an active component in red yeast rice) and Antrodia camphorata (AC, a folk mushroom) extract against PC3 human androgen-refractory PC cells. This combinatorial modality resulted in cell cycle arrest at the G0/G1 phase and induced apoptosis, accompanied by a marked reduction in molecules responsible for cellular proliferation (p-Rb/Rb, Cyclin A, Cyclin D1, and CDK1), aggressiveness (AXL, p-AKT, and survivin), and stemness (SIRT1, Notch1, and c-Myc). In contrast, treatment with either AC or lovastatin alone only exerted limited impacts on the cell cycle, apoptosis, and the aforementioned signaling molecules. Notably, significant reductions in canonical PC stemness markers (CD44 and CD133) were observed in lovastatin/AC-treated PC3 cells. Furthermore, lovastatin and AC have been individually examined for their anti-PC properties. Our findings elucidate a pioneering discovery in the synergistic combinatorial efficacy of AC and clinically viable concentrations of lovastatin on PC3 PC cells, offering novel insights into improving the therapeutic effects of dietary natural products for future strategic design of therapeutics against androgen-refractory prostate cancer.


Assuntos
Produtos Biológicos , Neoplasias da Próstata , Masculino , Humanos , Androgênios/metabolismo , Células PC-3 , Lovastatina/farmacologia , Proliferação de Células , Apoptose , Neoplasias da Próstata/patologia , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Linhagem Celular Tumoral
3.
Biochem Biophys Res Commun ; 682: 365-370, 2023 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-37839105

RESUMO

In non-small cell lung cancer (NSCLC), the receptor tyrosine kinase AXL has been identified as a potent activator of tumor progression and resistance to therapies. However, the molecular mechanisms behind AXL-mediated oncogenesis remain elusive. Current study thus aimed to uncover potential downstream genes regulated by AXL in NSCLC. Through transcriptomic RNA sequencing of AXL-silenced NSCLC cells, TMEM14A was identified as a significantly up-regulated gene. Clinical evaluations using GEPIA2 revealed that TMEM14A mRNA expression was notably higher in lung adenocarcinoma (LUAD) tumor tissues compared to normal tissues. Further, significantly increased TMEM14A levels were associated with poorer overall survival in LUAD patients. Experimentally, silencing TMEM14A in NSCLC cells led to reduced cellular proliferation and ATP levels, highlighting a key role of TMEM14A in NSCLC progression. Moreover, our promoter analysis demonstrated that AXL-mediated regulation of TMEM14A transcription could involve binding of transcription factors STAT and NF-κB to 5'-promoter of TMEM14A. Collectively, current study unveils TMEM14A as a novel downstream target of AXL, suggesting its potential as a therapeutic target to counteract resistance in future NSCLC patients undergoing AXL-targeted therapies.


Assuntos
Receptor Tirosina Quinase Axl , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Receptor Tirosina Quinase Axl/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Pulmonares/patologia , Proteínas de Membrana/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo
4.
Int J Mol Sci ; 24(19)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37834326

RESUMO

About 80% of lung cancer patients are diagnosed with non-small cell lung cancer (NSCLC). EGFR mutation and overexpression are common in NSCLC, thus making EGFR signaling a key target for therapy. While EGFR kinase inhibitors (EGFR-TKIs) are widely used and efficacious in treatment, increases in resistance and tumor recurrence with alternative survival pathway activation, such as that of AXL and MET, occur frequently. AXL is one of the EMT (epithelial-mesenchymal transition) signature genes, and EMT morphological changes are also responsible for EGFR-TKI resistance. MIG6 is a negative regulator of ERBB signaling and has been reported to be positively correlated with EGFR-TKI resistance, and downregulation of MIG6 by miR-200 enhances EMT transition. While MIG6 and AXL are both correlated with EMT and EGFR signaling pathways, how AXL, MIG6 and EGFR interplay in lung cancer remains elusive. Correlations between AXL and MIG6 expression were analyzed using Oncomine or the CCLE. A luciferase reporter assay was used for determining MIG6 promoter activity. Ectopic overexpression, RNA interference, Western blot analysis, qRT-PCR, a proximity ligation assay and a coimmunoprecipitation assay were performed to analyze the effects of certain gene expressions on protein-protein interaction and to explore the underlying mechanisms. An in vitro kinase assay and LC-MS/MS were utilized to determine the phosphorylation sites of AXL. In this study, we demonstrate that MIG6 is a novel substrate of AXL and is stabilized upon phosphorylation at Y310 and Y394/395 by AXL. This study reveals a connection between MIG6 and AXL in lung cancer. AXL phosphorylates and stabilizes MIG6 protein, and in this way EGFR signaling may be modulated. This study may provide new insights into the EGFR regulatory network and may help to advance cancer treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Fosforilação , Neoplasias Pulmonares/metabolismo , Receptores ErbB/metabolismo , Cromatografia Líquida , Inibidores de Proteínas Quinases/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Espectrometria de Massas em Tandem , Recidiva Local de Neoplasia , Mutação
6.
Artigo em Inglês | MEDLINE | ID: mdl-36767919

RESUMO

BACKGROUND: Metabolic syndrome is characterized by cardiovascular and chronic disease risk factors that cause health problems. Inequalities in medical resources and information present a challenge in this context. Indigenous communities may be unaware of their risk for metabolic syndrome. AIMS: This study explored factors associated with metabolic syndrome-related knowledge, attitudes, and behaviors among Taiwanese indigenous communities. METHODS: For this descriptive cross-sectional survey, we collected anthropometric data and used a self-administered questionnaire between 1 July 2016, to 31 July 2017, from a convenience sample of an indigenous tribe in eastern Taiwan. The response rate was 92%. RESULTS: The prevalence of metabolic syndrome was as high as 71%, and the average correct knowledge rate was 39.1%. The participants' self-management attitudes were mainly negative, and the self-management behaviors were low in this population. Stepwise regression analysis showed that knowledge, attitude, age, perception of physical condition, and body mass index, which accounted for 65% of the total variance, were the most predictive variables for self-management behaviors. CONCLUSIONS: This is the first study to report the relationship between metabolic syndrome knowledge, attitudes, and behaviors in an indigenous population. There is an urgent need to develop safety-based MetS health education programs that can provide access to the right information and enhance self-management approaches to lessen the growing burden of MetS in indigenous communities.


Assuntos
Síndrome Metabólica , Humanos , Síndrome Metabólica/epidemiologia , Estudos Transversais , Taiwan/epidemiologia , Conhecimentos, Atitudes e Prática em Saúde , Índice de Massa Corporal
7.
J Biomed Sci ; 29(1): 109, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36550569

RESUMO

BACKGROUND: Ovarian cancer has the highest mortality among gynecological cancers due to late diagnosis and lack of effective targeted therapy. Although the study of interplay between cancer cells with their microenvironment is emerging, how ovarian cancer triggers signaling that coordinates with immune cells to promote metastasis is still elusive. METHODS: Microarray and bioinformatics analysis of low and highly invasive ovarian cancer cell lines were used to reveal periostin (POSTN), a matrix protein with multifunctions in cancer, with elevated expression in the highly invasive cells. Anchorage independent assay, Western blot, RNA interference, confocal analysis and neutralizing antibody treatment were performed to analyze the effects of POSTN on tumor promotion and to explore the underlying mechanism. Chemotaxis, flow cytometry and cytokine array analyses were undertaken to analyze the involvement of POSTN in cancer-associated fibroblast (CAF) and macrophage modulation. Correlations between POSTN expression levels and clinical characteristics were analyzed using the Oncomine, commercial ovarian cancer cDNA and China Medical University Hospital patient cohort. In vivo effect of POSTN on metastasis was studied using a mouse xenograft model. RESULTS: Expression of POSTN was found to be elevated in highly invasive ovarian cancer cells. We observed that POSTN was co-localized with integrin ß3 and integrin ß5, which was important for POSTN-mediated activation of ERK and NF-κB. Ectopic expression of POSTN enhanced whereas knockdown of POSTN decreased cancer cell migration and invasion in vitro, as well as tumor growth and metastasis in vivo. POSTN enhanced integrin/ERK/NF-κB signaling through an autocrine effect on cancer cells to produce macrophage attracting and mobilizing cytokines including MIP-1ß, MCP-1, TNFα and RANTES resulting in increased chemotaxis of THP-1 monocytes and their polarization to M2 macrophages in vitro. In agreement, tumors derived from POSTN-overexpressing SKOV3 harbored more tumor-associated macrophages than the control tumors. POSTN induced TGF-ß2 expression from ovarian cancer cells to promote activation of adipose-derived stromal cells to become CAF-like cells expressing alpha smooth muscle actin and fibroblast activation protein alpha. Consistently, increased CAFs were observed in POSTN overexpressing SKOV3 cells-derived metastatic tumors. In clinical relevance, we found that expression of POSTN was positively correlated with advanced-stage diseases and poor overall survival of patients. CONCLUSIONS: Our study revealed a POSTN-integrin-NF-κB-mediated signaling and its involvement in enhancing M2 macrophages and CAFs, which could potentially participate in promoting tumor growth. Our results suggest that POSTN could be a useful prognosis marker and potential therapeutic target.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Ovarianas , Feminino , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Integrinas/metabolismo , Fator de Crescimento Transformador beta2/metabolismo , Linhagem Celular Tumoral , Neoplasias Ovarianas/genética , Citocinas/metabolismo , Macrófagos/metabolismo , Microambiente Tumoral/genética
8.
J Biomed Sci ; 29(1): 42, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35706019

RESUMO

BACKGROUND: The development of drug resistance in oral squamous cell carcinoma (OSCC) that frequently leads to recurrence and metastasis after initial treatment remains an unresolved challenge. Presence of cancer stem cells (CSCs) has been increasingly reported to be a critical contributing factor in drug resistance, tumor recurrence and metastasis. Thus, unveiling of mechanisms regulating CSCs and potential targets for developing their inhibitors will be instrumental for improving OSCC therapy. METHODS: siRNA, shRNA and miRNA that specifically target keratin 17 (KRT17) were used for modulation of gene expression and functional analyses. Sphere-formation and invasion/migration assays were utilized to assess cancer cell stemness and epithelial mesenchymal transition (EMT) properties, respectively. Duolink proximity ligation assay (PLA) was used to examine molecular proximity between KRT17 and plectin, which is a large protein that binds cytoskeleton components. Cell proliferation assay was employed to evaluate growth rates and viability of oral cancer cells treated with cisplatin, carboplatin or dasatinib. Xenograft mouse tumor model was used to evaluate the effect of KRT17- knockdown in OSCC cells on tumor growth and drug sensitization. RESULTS: Significantly elevated expression of KRT17 in highly invasive OSCC cell lines and advanced tumor specimens were observed and high KRT17 expression was correlated with poor overall survival. KRT17 gene silencing in OSCC cells attenuated their stemness properties including markedly reduced sphere forming ability and expression of stemness and EMT markers. We identified a novel signaling cascade orchestrated by KRT17 where its association with plectin resulted in activation of integrin ß4/α6, increased phosphorylation of FAK, Src and ERK, as well as stabilization and nuclear translocation of ß-catenin. The activation of this signaling cascade was correlated with enhanced OSCC cancer stemness and elevated expression of CD44 and epidermal growth factor receptor (EGFR). We identified and demonstrated KRT17 to be a direct target of miRNA-485-5p. Ectopic expression of miRNA-485-5p inhibited OSCC sphere formation and caused sensitization of cancer cells towards cisplatin and carboplatin, which could be significantly rescued by KRT17 overexpression. Dasatinib treatment that inhibited KRT17-mediated Src activation also resulted in OSCC drug sensitization. In OSCC xenograft mouse model, KRT17 knockdown significantly inhibited tumor growth, and combinatorial treatment with cisplatin elicited a greater tumor inhibitory effect. Consistently, markedly reduced levels of integrin ß4, active ß-catenin, CD44 and EGFR were observed in the tumors induced by KRT17 knockdown OSCC cells. CONCLUSIONS: A novel miRNA-485-5p/KRT17/integrin/FAK/Src/ERK/ß-catenin signaling pathway is unveiled to modulate OSCC cancer stemness and drug resistance to the common first-line chemotherapeutics. This provides a potential new therapeutic strategy to inhibit OSCC stem cells and counter chemoresistance.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Queratina-17/metabolismo , MicroRNAs , Neoplasias Bucais , Animais , Carboplatina/farmacologia , Carboplatina/uso terapêutico , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Dasatinibe/farmacologia , Dasatinibe/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Humanos , Integrina beta4/genética , Integrina beta4/metabolismo , Integrinas/genética , Integrinas/metabolismo , Integrinas/uso terapêutico , Queratina-17/genética , Queratina-17/farmacologia , Camundongos , MicroRNAs/farmacologia , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/genética , Plectina/genética , Plectina/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , beta Catenina/genética
9.
Autophagy ; 18(4): 921-934, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34470575

RESUMO

ABBREVIATIONS: ATG14: autophagy related 14; CDH2: cadherin 2; ChIP-qPCR: chromatin immunoprecipitation quantitative polymerase chain reaction; CQ: chloroquine; ECAR: extracellular acidification rate; EMT: epithelial-mesenchymal transition; EPCAM: epithelial cell adhesion molecule; MAP1LC3A/LC3A: microtubule associated protein 1 light chain 3 alpha; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MAP1LC3C/LC3C: microtubule associated protein 1 light chain 3 gamma; NDUFV2: NADH:ubiquinone oxidoreductase core subunit V2; OCR: oxygen consumption rate; ROS: reactive oxygen species; RT-qPCR: reverse-transcriptase quantitative polymerase chain reaction; SC: scrambled control; shRNA: short hairpin RNA; SNAI2: snail family transcriptional repressor 2; SOX2: SRY-box transcription factor 2; SQSTM1/p62: sequestosome 1; TGFB/TGF-ß: transforming growth factor beta; TOMM20: translocase of outer mitochondrial membrane 20; ZEB1: zinc finger E-box binding homeobox 1.


Assuntos
Autofagia , Neoplasias Pulmonares , Autofagia/fisiologia , Plasticidade Celular , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
10.
ACS Omega ; 4(19): 18428-18433, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31720546

RESUMO

Genistin and its aglycone genistein of isoflavone are naturally occurring in plants. The aim of this study is to develop an experimental animal model of enterohepatic circulation to investigate the metabolic biotransformation of genistin and genistein in rats. A paired-rat model was developed in which the drug was administered intravenously to the donor rat whose bile duct was cannulated into the duodenum of the untreated recipient rat. The blood sample was collected from the jugular vein of the donor and recipient rats after genistin administration. The results demonstrate that genistein was detected in both the donor and recipient rats after genistein administration (50 mg/kg, iv) in the donor rat, which suggested that the enterohepatic circulation of genistein occurred. The same phenomenon happened again in the biotransformation after genistin administration (50 mg/kg, iv) in the donor rat. Genistein was detected in the recipient rat's blood sample after treatment with ß-glucuronidase, which suggested that enzymatic hydrolysis occurred in the transformation of genistin into genistein. In conclusion, the research revealed the metabolic pathway of the glucuronidation of genistin into genistein.

11.
Sci Rep ; 9(1): 16922, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31729427

RESUMO

AXL is expressed in many types of cancer and promotes cancer cell survival, metastasis and drug resistance. Here, we focus on identifying modulators that regulate AXL at the mRNA level. We have previously observed that the AXL promoter activity is inversely correlated with the AXL expression levels, suggesting that post-transcriptional mechanisms exist that down-regulate the expression of AXL mRNA. Here we show that the RNA binding protein PTBP1 (polypyrimidine tract-binding protein) directly targets the 5'-UTR of AXL mRNA in vitro and in vivo. Moreover, we also demonstrate that PTBP1, but not PTBP2, inhibits the expression of AXL mRNA and the RNA recognition motif 1 (RRM1) of PTBP1 is crucial for this interaction. To clarify how PTBP1 regulates AXL expression at the mRNA level, we found that, while the transcription rate of AXL was not significantly different, PTBP1 decreased the stability of AXL mRNA. In addition, over-expression of AXL may counteract the PTBP1-mediated apoptosis. Knock-down of PTBP1 expression could enhance tumor growth in animal models. Finally, PTBP1 was found to be negatively correlated with AXL expression in lung tumor tissues in Oncomine datasets and in tissue micro-array (TMA) analysis. In conclusion, we have identified a molecular mechanism of AXL expression regulation by PTBP1 through controlling the AXL mRNA stability. These findings may represent new thoughts alternative to current approaches that directly inhibit AXL signaling and may eventually help to develop novel therapeutics to avoid cancer metastasis and drug resistance.


Assuntos
Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Regulação da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Proteínas Proto-Oncogênicas/genética , Estabilidade de RNA , RNA Mensageiro/genética , Receptores Proteína Tirosina Quinases/genética , Regiões 5' não Traduzidas , Apoptose , Linhagem Celular Tumoral , Movimento Celular , Sobrevivência Celular , Expressão Gênica , Genes Reporter , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Receptor Tirosina Quinase Axl
12.
Chin J Integr Med ; 2018 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-29455376

RESUMO

OBJECTIVE: To investigate the potential neuroprotective effect of human urine extract cell differentiation agent 2 (CDA-2) by the model of serum deprivation-induced apoptosis of PC12 cells and study the underlying molecular mechanisms. METHODS: Apoptosis of PC12 cells was induced by serum deprivation. CDA-2 at doses of 0.5-4 mg/mL was used to treat the serum-deprived PC12 cells. The cellular viability was measured by sulforhodamine B binding assay and the cell apoptosis was determined by flow cytometer. Western blot was used to analyze the expression of differentiation markers and activity of extracellular signal-regulated kinase (ERK). The cellular morphology was examined under an inverted microscope. RESULTS: CDA-2 inhibited apoptotic cell death of serum-deprived PC12 cells in a dose-dependent manner. Expression of low- and mid-sized neurofilaments was observed in serum-deprived PC12 cells treated with CDA-2 or nerve growth factor (NGF). However, CDA-2 did not induce proliferation of these cells like NGF. The morphology of CDA-2 treated cells was changed from rounded to neuron-like flat polygonal shape in contrast to the extensive neurite outgrowth induced by NGF. CDA-2 transiently induced the phosphorylation of ERK in serum deprived-PC12 cells and the expression of neurofilaments induced by CDA-2 was attenuated by mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) inhibitor PD98059. CONCLUSIONS: Human urine extract CDA-2 showed a potential neuroprotective activity which may correlate with ERK activation and differentiation induction.

13.
PLoS One ; 12(4): e0175802, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28426699

RESUMO

Osteoarthritis (OA) is a degenerative joint disease characterized by progressive destruction of articular cartilage. Interleukin (IL)-20 is a proinflammatory cytokine involved in the pathogenesis of rheumatoid arthritis. We investigated the role of IL-20 in OA and evaluated whether anti-IL-20 antibody (7E) treatment attenuates disease severity in murine models of surgery-induced OA. Immunohistochemical staining was used to detect IL-20 and its receptors expression in synovial tissue and cartilage from OA patients, and in OA synovial fibroblasts (OASFs) and chondrocytes (OACCs) from rodents with surgery-induced OA. RTQ-PCR and western blotting were used to determine IL-20-regulated OA-associated gene expression in OASFs and OACCs. OA rats and OA mice were treated with 7E. Arthritis severity was determined based on the degree of cartilage damage and the arthritis severity score. We found that IL-20 and its receptors were expressed in OASFs and OACCs. IL-20 induced TNF-α, IL-1ß, MMP-1, and MMP-13 expression by activating ERK-1/2 and JNK signals in OASFs. IL-20 not only upregulated MCP-1, IL-6, MMP-1, and MMP-13 expression, but also downregulated aggrecan, type 2 collagen, TGF-ß, and BMP-2 expression in OACCs. Arthritis severity was significantly lower in 7E-treated OA rats, and 7E- or MSC-treated OA mice. Therefore, we concluded that IL-20 was involved in the progression and development of OA through inducing proinflammatory cytokines and OA-associated gene expression in OASFs and OACCs. 7E reduced the severity of arthritis in murine models of surgery-induced OA. Our findings provide evidence that IL-20 is a novel target and that 7E is a potential therapeutic agent for OA.


Assuntos
Anticorpos Monoclonais/farmacologia , Cartilagem Articular/patologia , Modelos Animais de Doenças , Inflamação/prevenção & controle , Interleucinas/imunologia , Osteoartrite/patologia , Animais , Cartilagem Articular/metabolismo , Diferenciação Celular , Citocinas/metabolismo , Humanos , Inflamação/metabolismo , Masculino , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Osteoartrite/genética , Osteoartrite/metabolismo , Proteínas Quinases/metabolismo , Ratos , Ratos Sprague-Dawley , Índice de Gravidade de Doença
14.
RNA ; 22(2): 303-15, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26667302

RESUMO

The AXL receptor tyrosine kinase is frequently overexpressed in cancers and is important in cancer invasion/metastasis and chemoresistance. Here, we demonstrate a regulatory feedback loop between AXL and microRNA (miRNA) at the post-transcriptional level. Both the GAS6-binding domain and the kinase domain of AXL, particularly the Y779 tyrosine phosphorylation site, are shown to be crucial for this autoregulation. To clarify the role of miRNAs in this regulation loop, approaches using bioinformatics and molecular techniques were applied, revealing that miR-34a may target the 3' UTR of AXL mRNA to inhibit AXL expression. Interestingly and importantly, AXL overexpression may induce miR-34a expression by activating the transcription factor ELK1 via the JNK signaling pathway. In addition, ectopic overexpression of ELK1 promotes apoptosis through, in part, down-regulation of AXL. Therefore, we propose that AXL is autoregulated by miR-34a in a feedback loop; this may provide a novel opportunity for developing AXL-targeted anticancer therapies.


Assuntos
Células Epiteliais/metabolismo , Retroalimentação Fisiológica , Regulação Neoplásica da Expressão Gênica , MAP Quinase Quinase 4/metabolismo , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas Elk-1 do Domínio ets/metabolismo , Apoptose , Sítios de Ligação , Linhagem Celular Tumoral , Células Epiteliais/patologia , Humanos , Pulmão/metabolismo , Pulmão/patologia , MAP Quinase Quinase 4/genética , MicroRNAs/genética , Análise em Microsséries , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Transdução de Sinais , Tirosina/metabolismo , Proteínas Elk-1 do Domínio ets/genética , Receptor Tirosina Quinase Axl
15.
Opt Express ; 21(8): 9643-51, 2013 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-23609674

RESUMO

The present study demonstrates the optoelectrical and low-frequency noise characteristics of ZnO-SiO(2) nanocomposite solar-blind metal-semiconductor-metal photodetectors (MSM PDs) on flexible polyethersulfone (PES) substrate with and without an organosilicon [SiO(x)(CH(3))] buffer layer. For a given bandwidth of 100 Hz and a -5 V applied bias, the noise equivalent powers of the ZnO-SiO(2) nanocomposite MSM PD on PES with and without the SiO(x)(CH(3)) buffer layer were 1.39 × 10(-14) and 5.72 × 10(-14) W at 240nm, respectively, corresponding to the normalized detectivities of 5.04 × 10(14) and 1.22 × 10(14) Hz(0.5) W(-1), respectively. These findings indicate that a lower noise level and a higher detectivity can be achieved for ZnO-SiO(2) nanocomposite MSM PDs on PES by introducing a SiO(x)(CH(3)) buffer layer.


Assuntos
Compostos Orgânicos/química , Fotometria/instrumentação , Semicondutores , Dióxido de Silício/química , Óxido de Zinco/química , Condutividade Elétrica , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Compostos Orgânicos/efeitos da radiação , Razão Sinal-Ruído , Dióxido de Silício/efeitos da radiação , Óxido de Zinco/efeitos da radiação
16.
Opt Express ; 20(18): 19635-42, 2012 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23037016

RESUMO

Sputtered ZnO-SiO2 nanocomposite light-emitting diodes (LEDs) were treated using a flat-top nanosecond laser (FTNL) under room temperature. The intensity of the 376 nm electroluminescence (EL) emission of ZnO-SiO2 nanocomposite LEDs at a current of 9 mA with FTNL treatment was approximately 1.4 times greater than LEDs without FTNL treatment. Furthermore, the FTNL-treated LEDs indicated a narrower full width at half maximum of the 376 nm EL emission than those of LEDs without FTNL treatment. Thus, FTNL treatment of ZnO-SiO2 nanocomposite LEDs could induce the recrystallization of distributed ZnO nanoclusters and reduce the defects in ZnO-SiO2 nanocomposite layers.


Assuntos
Iluminação/instrumentação , Nanoestruturas/química , Nanotecnologia/instrumentação , Semicondutores , Desenho de Equipamento , Análise de Falha de Equipamento , Temperatura Alta , Lasers , Nanoestruturas/efeitos da radiação
17.
Opt Express ; 20(5): 5689-95, 2012 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-22418376

RESUMO

The laser-induced periodic surface structure technique was used to form simultaneously dual-scale rough structures (DSRS) with spiral-shaped nanoscale structure inside semi-spherical microscale holes on p-GaN surface to improve the light-extraction efficiency of light-emitting diodes (LEDs). The light output power of DSRS-LEDs was 30% higher than that of conventional LEDs at an injection current of 20 mA. The enhancement in the light output power could be attributed to the increase in the probability of photons to escape from the increased surface area of textured p-GaN surface.


Assuntos
Gálio/química , Lasers , Iluminação/instrumentação , Semicondutores , Transferência de Energia , Desenho de Equipamento , Análise de Falha de Equipamento
18.
Opt Express ; 19(12): 11873-9, 2011 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-21716420

RESUMO

We have demonstrated the electroluminescence (EL) of Ga:ZnO/i-ZnO-SiO2 nanocomposite/p-GaN n-i-p heterostructure light-emitting devices (LEDs). ZnO nano-clusters with sizes distributing from 2 to 7nm were found inside the co-sputtered i-ZnO-SiO2 nanocomposite layer under the observation of high-resolution transparent electron microscope. A clear UV EL at 376 nm from i-ZnO-SiO2 nanocomposite in these p-i-n heterostructure LEDs was observed under the forward current of 9 mA. The EL emission peak at 376 and 427nm of the Ga:ZnO/i-ZnO-SiO2 nanocomposite/p-GaN n-i-p heterostructure LEDs were attributed to the radiative recombination from the ZnO clusters and the Mg acceptor levels in the p-GaN layer, respectively.

19.
Cancer Res ; 67(8): 3878-87, 2007 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-17440102

RESUMO

Metastasis and drug resistance are the major causes of mortality in patients with non-small cell lung cancer (NSCLC). Several receptor tyrosine kinases (RTKs), including AXL, are involved in the progression of NSCLC. The AXL/MER/SKY subfamily is involved in cell adhesion, motility, angiogenesis, and signal transduction and may play a significant role in the invasiveness of cancer cells. Notably, no specific inhibitors of AXL have been described. A series of CL1 sublines with progressive invasiveness established from a patient with NSCLC has been identified that positively correlates with AXL expression and resistance to chemotherapeutic drugs. The ectopic overexpression of AXL results in elevated cell invasiveness and drug resistance. Nuclear factor-kappaB (NF-kappaB) signaling activity is associated with AXL expression and may play an important role in the enhancement of invasiveness and doxorubicin resistance, as shown by using the NF-kappaB inhibitor, sulfasalazine, and IkappaB dominant-negative transfectants. In the current study, sulfasalazine exerted a synergistic anticancer effect with doxorubicin and suppressed cancer cell invasiveness in parallel in CL1 sublines and various AXL-expressing cancer cell lines. Phosphorylation of AXL and other RTKs (ErbB2 and epidermal growth factor receptor) was abolished by sulfasalazine within 15 min, suggesting that the inhibition of NF-kappaB and the kinase activity of RTKs are involved in the pharmacologic effects of sulfasalazine. Our study suggests that AXL is involved in NSCLC metastasis and drug resistance and may therefore provide a molecular basis for RTK-targeted therapy using sulfasalazine to enhance the efficacy of chemotherapy in NSCLC.


Assuntos
Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/enzimologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/enzimologia , Proteínas Oncogênicas/biossíntese , Receptores Proteína Tirosina Quinases/biossíntese , Sulfassalazina/farmacologia , Adenocarcinoma/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Doxorrubicina/administração & dosagem , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Humanos , Neoplasias Pulmonares/patologia , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Invasividade Neoplásica , Proteínas Oncogênicas/metabolismo , Fosforilação , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Sulfassalazina/administração & dosagem , Receptor Tirosina Quinase Axl
20.
Int J Cancer ; 118(3): 773-9, 2006 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-16094629

RESUMO

Lovastatin (an HMG-CoA reductase inhibitor) and troglitazone (a PPAR-gamma agonist) have been intensively studied prospectively for their application in cancer treatment. However, clinical trials of lovastatin or troglitazone in cancer treatment resulted in only limited responses. To improve their efficacy, lovastatin and troglitazone have, respectively, been tried to combine with other anticancer agents with varied outcomes. In our study, we found a dramatic synergism between lovastatin and troglitazone in anticancer at clinically achievable concentrations. This synergism was found in far majority of cell lines tested including DBTRG 05 MG (glioblastoma) and CL1-0 (lung). This amazing synergism was accompanied by synergistic modulation of E2F-1 and p27(Kip1), which were reported to mediate the anticancer activities of lovastatin and troglitazone, respectively, and other cell cycle regulating proteins such as CDK2, cyclin A and RB phosphorylation status. With this dramatic combination effect of lovastatin and troglitazone, a promising regimen of cancer therapy may be materialized in the future.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Cromanos/administração & dosagem , Ciclina A/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p27 , Relação Dose-Resposta a Droga , Fator de Transcrição E2F1/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Células HeLa , Humanos , Lovastatina/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Masculino , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Fosforilação/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Proteína do Retinoblastoma/metabolismo , Tiazolidinedionas/administração & dosagem , Troglitazona , Células Tumorais Cultivadas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...