Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(35): 37265-37277, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39246457

RESUMO

The emission reduction of the main greenhouse gas, CO2, can be achieved via carbon capture, utilization, and storage (CCUS) technology. Geological carbon storage (GCS) projects, especially CO2 storage in deep saline aquifers, are the most promising methods for meeting the net zero emission goal. The safety and efficiency of CO2 saline aquifer storage are primarily controlled by structural and capillary trapping, which are significantly influenced by the interactions between fluid and solid phases in terms of the interfacial tension (IFT) between the injected CO2 and brine at the reservoir site. In this study, a model based on the random forest (RF) model and the Bayesian optimization (BO) algorithm was developed to estimate the IFT between the pure and impure gas-brine binary systems for application to CO2 saline aquifer sequestration. Then three heuristic algorithms were applied to validate the accuracy and efficiency of the established model. The results of this study indicate that among the four mixed models, the Bayesian optimized random forest model fits the experimental data with the smallest root-mean-square error (RMSE = 1.7705) and mean absolute percentage error (MAPE = 2.0687%) and a high coefficient of determination (R2 = 0.9729). Then the IFT values predicted via this model were used as an input parameter to estimate the CO2 sequestration capacity of saline aquifers at different depths in the Tarim Basin of Xinjiang, China. The burial depth had a limited influence on the CO2 storage capacity.

2.
Sensors (Basel) ; 22(14)2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35891002

RESUMO

The leakage of underground natural gas has a negative impact on the environment and safety. Trace amounts of gas leak concentration cannot reach the threshold for direct detection. The low concentration of natural gas can cause changes in surface vegetation, so remote sensing can be used to detect micro-leakage indirectly. This study used infrared thermal imaging combined with deep learning methods to detect natural gas micro-leakage areas and revealed the different canopy temperature characteristics of four vegetation varieties (grass, soybean, corn and wheat) under natural gas stress from 2017 to 2019. The correlation analysis between natural gas concentration and canopy temperature showed that the canopy temperature of vegetation increased under gas stress. A GoogLeNet model with Bilinear pooling (GLNB) was proposed for the classification of different vegetation varieties under natural gas micro-leakage stress. Further, transfer learning is used to improve the model training process and classification efficiency. The proposed methods achieved 95.33% average accuracy, 95.02% average recall and 95.52% average specificity of stress classification for four vegetation varieties. Finally, based on Grad-Cam and the quasi-circular spatial distribution rules of gas stressed areas, the range of natural gas micro-leakage stress areas under different vegetation and stress durations was detected. Taken together, this study demonstrated the potential of using thermal infrared imaging and deep learning in identifying gas-stressed vegetation, which was of great value for detecting the location of natural gas micro-leakage.


Assuntos
Aprendizado Profundo , Gás Natural , Gás Natural/análise , Temperatura , Zea mays
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA