Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther Methods Clin Dev ; 23: 108-118, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34462721

RESUMO

Because of the relatively limited understanding of coronavirus disease 2019 (COVID-19) pathogenesis, immunological analysis for vaccine development is needed. Mice and macaques were immunized with an inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine prepared by two inactivators. Various immunological indexes were tested, and viral challenges were performed on day 7 or 150 after booster immunization in monkeys. This inactivated SARS-CoV-2 vaccine was produced by sequential inactivation with formaldehyde followed by propiolactone. The various antibody responses and specific T cell responses to different viral antigens elicited in immunized animals were maintained for longer than 150 days. This comprehensive immune response could effectively protect vaccinated macaques by inhibiting viral replication in macaques and substantially alleviating immunopathological damage, and no clinical manifestation of immunopathogenicity was observed in immunized individuals during viral challenge. This candidate inactivated vaccine was identified as being effective against SARS-CoV-2 challenge in rhesus macaques.

2.
Emerg Microbes Infect ; 10(1): 342-355, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33555988

RESUMO

The current study aims to develop a safe and highly immunogenic COVID-19 vaccine. The novel combination of a DNA vaccine encoding the full-length Spike (S) protein of SARS-CoV-2 and a recombinant S1 protein vaccine induced high level neutralizing antibody and T cell immune responses in both small and large animal models. More significantly, the co-delivery of DNA and protein components at the same time elicited full protection against intratracheal challenge of SARS-CoV-2 viruses in immunized rhesus macaques. As both DNA and protein vaccines have been proven safe in previous human studies, and DNA vaccines are capable of eliciting germinal center B cell development, which is critical for high-affinity memory B cell responses, the DNA and protein co-delivery vaccine approach has great potential to serve as a safe and effective approach to develop COVID-19 vaccines that provide long-term protection.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas de DNA/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Linhagem Celular , DNA/imunologia , Células HEK293 , Humanos , Contagem de Linfócitos , Macaca mulatta , Camundongos , Camundongos Endogâmicos C57BL , Plasmídeos/genética , Coelhos , Proteínas Recombinantes/imunologia , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...