Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Analyst ; 148(24): 6341-6349, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37955601

RESUMO

SO2, NO2 and NO are the main atmospheric pollutants produced by the combustion of fossil fuel. Detecting these gases is of great significance for atmospheric protection and the online concentration detection of pollutants. In this study, the concentration retrieval methods of NO, NO2 and SO2 and their mutual effects were studied in the wavelength range of 192.3-254.4 nm. In this band, NO, NO2 and SO2 have large absorption cross-sections; however, their spectrum superpositions were serious. A novel method was proposed to separate the superposed absorption spectra of NO and SO2 or NO2. The advantage of this method is that it can remove the influence of SO2 and NO2 on NO concentration retrieval. The fast Fourier transform (FFT) amplitude method was used to calculate the concentrations of SO2 and NO2, and the direct absorption spectroscopy method was used to calculate NO concentration. Via these methods, the gas concentrations of SO2, NO2 and NO can be calculated in ternary-gas mixtures. The experimental results show that these methods can effectively remove the mutual interferences between the concentration retrieval of NO, NO2 and SO2. The maximum absolute values of the relative deviations for the concentration retrieval of SO2, NO2 and NO in ternary-gas mixtures are 3.868%, 4.740% and 5.008%, respectively. These methods have high detection precision and good adaptability and are suitable for online flue detection equipment.

2.
RSC Adv ; 13(28): 19149-19157, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37362327

RESUMO

NO2 and SO2 are important components of air pollutants, and their absorption spectra are superimposed at 193-253 nm. The superposed spectra affect the gas concentration retrieval based on the ultraviolet differential optical absorption spectroscopy (DOAS) method. In this study, a suitable wavelength band was chosen for concentration retrieval, moreover, the characteristics of the quasi-periodic variation of absorption cross-section with wavelength was given sufficient attention and then the superposed spectra were separated by the Fast Fourier transform (FFT) method. The concentration of the gases to be measured was calculated according to the relationship between the amplitude of absorbance after FFT and the gas concentration. The experimental results prove that by using an absorption cell with a 700 mm optical path, the relative deviation absolute value of the retrieval concentration of SO2 in a NO2 and SO2 gas mixture is less than 1.471%, and that of NO2 in a NO2 and SO2 gas mixture is less than 7.207%. The method has good adaptability, high detection precision, whether single SO2, NO2 or a mixture of both, and important reference value for the development of DOAS and future research on the high-precision detection of more types of mixed gases in the ultraviolet band, such as gas mixtures of NO2, SO2 and NO in flue gas.

3.
Opt Express ; 31(9): 13933-13942, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37157268

RESUMO

Wavelength division multiplexing (WDM) devices are key photonic integrated circuit (PIC) elements. Conventional WDM devices based on silicon waveguides and photonic crystals have limited transmittance due to the high loss introduced by the strong backward scattering from defects. In addition, it is challenging to reduce the footprint of those devices. Here we theoretically demonstrate a WDM device in the telecommunication range based on all-dielectric silicon topological valley photonic crystal (VPC) structures. We tune its effective refractive index by tuning the physical parameters of the lattice in the silicon substrate, which can continuously tune the operating wavelength range of the topological edge states, which allows the designing of WDM devices with different channels. The WDM device has two channels (1475 nm-1530 nm and 1583 nm-1637 nm), with contrast ratios of 29.6 dB and 35.3 dB, respectively. We demonstrated highly efficient devices for multiplexing and demultiplexing in a WDM system. The principle of manipulating the working bandwidth of the topological edge states can be generally applied in designing different integratable photonic devices. Thus, it will find broad applications.

4.
Eval Program Plann ; 97: 102202, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36502669

RESUMO

This paper proposes a combination weighting calculation method to evaluate the performance of majors. Because of the varying emphasis of each weighting method, a combination of the Criteria Importance Through the Intercriteria Correlation (CRITIC) method, entropy method, and mean-variance analysis is proposed. Based on the evaluation index system for engineering majors offered at universities, the research of index weight determination and major evaluation is carried out after investigating the data of various indices of engineering majors in recent years. Compared with the majors in engineering education accreditation, the results reveal that the major comprehensive performance ranking is valid, thereby not only providing a new program for universities to establish an evaluation mechanism but also implementing normalized and dynamic major evaluation.


Assuntos
Avaliação de Programas e Projetos de Saúde , Universidades , Humanos , Avaliação de Programas e Projetos de Saúde/métodos , Universidades/organização & administração , China
5.
Appl Opt ; 61(15): 4571-4578, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-36256300

RESUMO

Ratiometric fluorescent sensors are widely used in biological sensing and immunoassays due to their high sensitivity detection of analytes. The high-ratio value of fluorescence can increase the sensitivity of the fluorescence sensor; in addition, the directional emission can improve the efficiency of light collection and improve the effective use of radiation power. In previous studies, low fluorescence ratios and low directional emission efficiency have restricted the application of ratio fluorescence sensors. Based on the above constraints, this paper proposes an asymmetric hexagonal microcavity structure. By destroying the complete rotational symmetry of the hexagon structure, it achieves high fluorescence ratios and high-efficiency directional emission in the far-field range in the near-infrared wavelength range, which is of significance for the development of high sensitivity fluorescence sensors.


Assuntos
Corantes Fluorescentes , Espectrometria de Fluorescência , Corantes Fluorescentes/química
6.
Appl Opt ; 61(2): 485-490, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35200887

RESUMO

Conventional theoretical and numerical studies on photonic crystal, which often does not consider the film thickness error during the experimental preparation process, will meet a large deviation between the experiment and the simulation. The filtering characteristics of one-dimensional (1D) photonic crystals with random film thickness errors (modeled as the Gaussian distribution) are systematically investigated by statistical method and numerical simulations. By studying the influence of the deviation of film thickness and the period number on the filter characteristics, it shows that the forbidden bandwidth is reduced to 80.27% of the intrinsic energy band when the film thickness deviation is σ=0.25a. Furthermore, we found that introduction of a slight disturbance of the film thickness (σ=0.01a) to photonic crystal will broaden the forbidden bandwidth to 100.49%. The proposed photonic crystal model with film thickness deviation can reduce the error between experiment and theory, which can be used for designing broadband photonic bandgaps. These structures have potential applications such as light-matter interactions, ultra-small filters, and photonic chips.

7.
Opt Express ; 30(4): 6275-6283, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35209568

RESUMO

Here we theoretically design valley photonic crystals (VPCs) based on two-dimensional (2D) hexagonal boron nitride (hBN) materials, which are able to support topological edge states in the visible region. The edge states can achieve spin-dependent unidirectional transmission with a high forward transmittance up to 0.96 and a transmission contrast of 0.99. We further study the effect of refractive index on transmittance and bandwidth, and it is found that with the increase of refractive index, both transmittance and bandwidth increased accordingly. This study opens new possibilities in designing unidirectional transmission devices in the visible region and will find broad applications.

8.
Opt Express ; 29(18): 28167-28177, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34614954

RESUMO

Conventional full-view imaging systems, which often need complicated image processing algorithms to reconstruct full-view images captured by motional/multiple cameras from different views, cannot have good real-time imaging capability. We design curved-to-flat conversion lens (CFCL) based on optic-null medium, which can directly project/image optical patterns from closed object surface onto image plane (e.g., the focal plane of microscopy), and shows good real-time full-view imaging performance. To realize the CFCL, the reduced optic-null medium is designed by subwavelength metal channels filled with homogeneous isotropic dielectrics. Numerical simulation results verify the function of the designed CFCL, which can image various dynamic optical patterns from the closed object surface to the finite-view image plane. The designed CFCL may have many applications in real-timely observing dynamic closed surfaces in full view, e.g., living tissue/cell and soft material's surface.

9.
Appl Opt ; 60(25): 7619-7627, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34613229

RESUMO

Integrable nanophotodiode devices have attracted much research interest in recent years because of their potential applications in all-optical computing and optical communication systems. We propose a new optical diode design scheme. We use genetic algorithms (GAs) to design an optical diode, which has a device footprint of only 2.5×2.5µm2. These devices designed by GA have the ability to achieve high-efficiency unidirectional transmission. Simulations show the forward transmission efficiency can reach higher than 65% for a Gaussian beam between the wavelengths of 1400 and 1600 nm, and the peak transmission efficiency reaches 75%. The transmission contrast at the design wavelength between 1500 and 1600 nm is higher than 90%, which meets the requirements of high unidirectionality, wide operational bandwidth, and small scale. The devices have more advantages for optical diodes compared with structures designed by photonic crystals and gratings. The application of this scheme provides a new idea for the design and research of all-optical diodes in the field of optical communication.

10.
Phys Rev Lett ; 125(20): 207401, 2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33258655

RESUMO

Subwavelength channels filled with near-zero-index (NZI) media can realize extraordinary optical functionalities, for example, tunneling electromagnetic wave without reflections, but usually confined in a narrow wavelength band due to the material singularity (refractive index n≈0), which seriously limits the practical potentials. In this Letter, we show this limit can be fundamentally overcome by an alternative, named near-zero-index-featured (NZIF) structure, with the singularity transmuted via a controlled optical conformal mapping, enabling the device implementation with nonmagnetic normal dielectrics (i.e., relative permittivity >1). Their equivalence is strictly examined through a subwavelength tunneling waveguide. Classic wave tunneling features in a broad frequency range are revealed in various confined geometries. These properties are robust against the disturbance of several kinds of structural defects benefited from the infinite effective local wavelength. The broadband and lossless NZIF medium proposed here provides a promising way to pursue the fascinating light controlling functionalities as initially enabled by singular NZI materials.

11.
Opt Express ; 28(23): 35363-35375, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182984

RESUMO

Previous invisible gateways are mainly based on super-scattering effect, which can only work for the perfect electric conductor (PEC) wall, while no further exploration is conducted for the walls made of other materials (i.e., the actual wall is not PEC). In this study, we design an asymmetric universal invisible gateway by transformation optics, which is versatile for applying arbitrary materials as wall materials. In addition, its unique asymmetric structure leads to the difference of the detection results when the relative position of the detection source and the invisible gateway changes: one side can only see a complete wall (no gateway) and the other side can detect the gateway in the middle of the wall. This research advances a new step for the specific application of invisible gateway.

12.
Appl Opt ; 59(27): 8111-8117, 2020 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-32976389

RESUMO

A new broadband tunable metamaterial absorber based on different radii of vanadium dioxide (VO2) rings loaded on the dielectric layer is designed. According to the insulator-to-metal phase transition characteristics of VO2 under thermal excitation, the dynamic adjustment of the absorption by the external temperature is achieved. The simulation results demonstrate that when VO2 is in its metal phase at high temperature, an absorption greater than 90% in the bandwidth range of 2.64-7 THz can be obtained and its relative bandwidth is reached to 90.5%. However, the absorption rate in the same frequency range is always lower than 2.3% when VO2 is in the insulator phase at low temperature, which means that the absorber can be used as a perfect reflector. The maximum tunable range of the proposed absorber can be realized from below 2.3% to nearly 100%. We further analyze and discuss the equivalent impedance and electric field distribution of the absorber and clarify the adjustment mechanism of the absorption performance of the VO2 ring. In addition, a multireflection interference theory is also investigated to quantitatively explain the physical absorption mechanism. Such a tunable broadband absorber based on temperature control has great potential to be applied to sensors, thermophotovoltaics, and wireless communication.

13.
Appl Opt ; 59(14): 4416-4421, 2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-32400421

RESUMO

Here, we theoretically present an on-chip nanophotonic asymmetric transmission device (ATD) based on the photonic crystal (PhC) waveguide structure with complete photonic bandgaps (CPBGs). The ATD comprises two-dimensional silica and germanium PhCs with CPBGs, within which line defects are introduced to create highly efficient waveguides to achieve high forward transmittance. In the meantime, the total internal reflection principle is applied to block the backward incidence, achieving asymmetric transmission. We optimize the design of the PhCs and the waveguide structure by scanning different structure parameters. The optimized ATD shows a high forward transmittance of 0.581 and contrast ratio of 0.989 at the wavelength of 1582 nm for TE mode. The results deepen the understanding and open up the new possibility in designing novel ATDs. The on-chip ATD will find broad applications in optical communications and quantum computing.

14.
Opt Express ; 27(23): 33757-33767, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31878437

RESUMO

A new method to control heat flux, called thermal surface transformation (TST), is introduced from transformation thermodynamics. Compared with transformation thermodynamics, TST has many advantage. First, there is no mathematical calculation during the whole process in TST (novel thermal devices can be designed graphically in a surface-to-surface way). Second, all thermal devices of various functions, shapes and sizes designed by TST only require one homogenous anisotropic thermal medium, i.e., thermal-null medium (TNM). With the help of the effective medium theory, TNM can be realized by layered copper and expanded polystyrene, whose performance on controlling heat flux by TST is verified by numerical simulations. Many examples are given, including thermal imaging devices, thermal unidirectional cloak, concentrator, rotator and thermal focusing devices.

15.
Opt Express ; 27(12): A596-A610, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-31252840

RESUMO

A silver grating containing three grooves with different depths in one period was proposed as the back electrode for improving light absorption in organic solar cells. We found that the broadband absorption enhancement of the active layer covering the visible and near-infrared bands can be obtained due to the excitation of surface plasmon resonance and the multiple resonances of cavity mode. The integrated absorption efficiency of the proposed structure under TM polarization between 350 nm to 900 nm is 57.4%, with consideration of the weight of AM 1.5G solar spectrum, and is increased by 13.4% with respect to the equivalent planar device. Besides, the wide-angle absorption in proposed structure can be observed in the range from 0 to 50 degrees. These findings are of great importance for rationally designing composite nanostructures of metal gratings-based absorbers for sensing and photon-detecting applications.

16.
Appl Opt ; 56(19): 5463-5469, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29047505

RESUMO

We propose a tuning filter containing two channels by inserting a defect layer (Air/Si/Air/Si/Air) into a one-dimensional photonic crystal of Si/SiO2, which is on the symmetry of the defect. Two transmission peaks (1528.98 and 1564.74 nm) appear in the optical communication S-band and C-band, and the transmittance of these two channels is up to 100%. In addition, this design realizes multi-channel filtering to process large dynamic range or multiple independent signals in the near-infrared band by changing the structure. The tuning range will be enlarged, and the channels can be moved in this range through the easy control of air thickness and incident angle.

17.
J Mater Chem B ; 5(44): 8839-8844, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-32264277

RESUMO

The enhancement of biosensing sensitivity based on a quantum dot (QD) is limited by the long distance between the QD and the substrate in in vitro detection, which prevents the development of biosensors. Here an individual sharp convex gold groove is proposed to enhance remote fluorescence by exciting and collecting fluorescence efficiently. The structure shows a higher emission power than other wider gold groove structures when the QD is individually placed at five random positions inside the groove. Compared with bare glass, the total power enhancement factor of our structure is up to 17.0 times, 6.6 times and 6.4 times when the QD is 3.5 µm, 7.6 µm and 9.0 µm away from the bottom of the groove, respectively, due to the scattered emission of the QD and guided resonance modes inside the groove. In addition, the structure is easy to fabricate. The individual sharp convex gold groove is expected to be used as one unit of multi-channels in micro/nano fluidic biosensing. The sample volume could be very small or large according to real applications due to the particular geometric features of our structure.

18.
Sci Rep ; 5: 12794, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26238270

RESUMO

We show a hybrid structure consisting of Si film with photonic crystal surface and random triangular gold grooves reflector at the bottom, which is capable of realizing efficient, broad-band, wide-angle optical absorption. It is numerically demonstrated that the enhanced absorption in a broad wavelength range (0.3-9.9 µm) due to the scattering effect of both sides of the structure and the created resonance modes. Larger thickness and period are favored to enhance the absorption in broader wavelength range. Substantial electric field concentrates in the grooves of surface photonic crystal and in the Si film. Our structure is versatile for solar cells, broadband photodetection and stealth coating.

19.
Nanoscale ; 6(24): 14708-15, 2014 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-25238164

RESUMO

Large normal-direction excitation and emission of dual-emitting quantum dots (QDs) are essential for practical application of QD sensors based on the ratiometric fluorescence response. We have numerically demonstrated an all-dielectric four-layer cascaded photonic crystal (CPC) structure (alternating TiO2 and SiO2/SU8 layers with two dimensional nanoscale patterns in each layer) which is capable of providing normal-direction high Q-factor leaky modes at excitation wavelengths of QDs and two low Q-factor leaky modes coinciding with the two emission peaks of a dual-emitting QD. Normal-direction excitation and far-field emission of the dual-emitting QDs are enhanced significantly when QDs are distributed on/in the top TiO2 layer of the CPC structure, especially in the spatial distribution areas of the resonant leaky modes. QDs can be positioned differently depending on the applications. Positioning QDs on the top TiO2 layer will improve the signal-to-noise ratios of QD biomedical/chemical/temperature sensors, while embedding QDs in the top TiO2 layer will increase the light extraction from the QD light emitting device, making our CPC a versatile optical coupling structure. Our CPC-QD structure is experimentally feasible and robust against the parameter perturbation in real fabrication.

20.
Opt Express ; 21(7): 8701-10, 2013 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-23571959

RESUMO

We demonstrate experimentally and numerically a method using the incoherent delayed self-interference (DSI) of chaotic light from a semiconductor laser with optical feedback to generate wideband chaotic signal. The results show that, the DSI can eliminate the domination of laser relaxation oscillation existing in the chaotic laser light and therefore flatten and widen the power spectrum. Furthermore, the DSI depresses the time-delay signature induced by external cavity modes and improves the symmetry of probability distribution by more than one magnitude. We also experimentally show that this DSI signal is beneficial to the random number generation.


Assuntos
Lasers Semicondutores , Modelos Teóricos , Oscilometria/métodos , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Dinâmica não Linear , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...