Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Oncol ; 41(6): 137, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38705933

RESUMO

Metastasis poses a significant challenge in combating tumors. Even in papillary thyroid cancer (PTC), which typically exhibits a favorable prognosis, high recurrence rates are attributed to metastasis. Cytoplasmic linker protein 170 (CLIP170) functions as a classical microtubule plus-end tracking protein (+TIP) and has shown close association with cell migration. Nevertheless, the specific impact of CLIP170 on PTC cells remains to be elucidated. Our analysis of the GEO and TCGA databases unveiled an association between CLIP170 and the progression of PTC. To explore the impact of CLIP170 on PTC cells, we conducted various assays. We evaluated its effects through CCK-8, wound healing assay, and transwell assay after knocking down CLIP170. Additionally, the influence of CLIP170 on the cellular actin structure was examined via immunofluorescence; we further investigated the molecular expressions of epithelial-mesenchymal transition (EMT) and the transforming growth factor-ß (TGF-ß) signaling pathways through Western blotting and RT-qPCR. These findings were substantiated through an in vivo nude mouse model of lung metastasis. We observed a decreased expression of CLIP170 in PTC in contrast to normal thyroid tissue. Functionally, the knockdown of CLIP170 (CLIP170KD) notably enhanced the metastatic potential and EMT of PTC cells, both in vitro and in vivo. Mechanistically, CLIP170KD triggered the activation of the TGF-ß pathway, subsequently promoting tumor cell migration, invasion, and EMT. Remarkably, the TGF-ß inhibitor LY2157299 effectively countered TGF-ß activity and significantly reversed tumor metastasis and EMT induced by CLIP170 knockdown. In summary, these findings collectively propose CLIP170 as a promising therapeutic target to mitigate metastatic tendencies in PTC.


Assuntos
Transição Epitelial-Mesenquimal , Proteínas Associadas aos Microtúbulos , Proteínas de Neoplasias , Transdução de Sinais , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide , Fator de Crescimento Transformador beta , Animais , Feminino , Humanos , Masculino , Camundongos , Linhagem Celular Tumoral , Movimento Celular , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/genética , Camundongos Nus , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Metástase Neoplásica , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Câncer Papilífero da Tireoide/patologia , Câncer Papilífero da Tireoide/metabolismo , Câncer Papilífero da Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/genética , Fator de Crescimento Transformador beta/metabolismo
2.
Nat Microbiol ; 9(5): 1256-1270, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38649412

RESUMO

Epstein-Barr virus (EBV) can infect both B cells and epithelial cells (ECs), causing diseases such as mononucleosis and cancer. It enters ECs via Ephrin receptor A2 (EphA2). The function of interferon-induced transmembrane protein-1 (IFITM1) in EBV infection of ECs remains elusive. Here we report that IFITM1 inhibits EphA2-mediated EBV entry into ECs. RNA-sequencing and clinical sample analysis show reduced IFITM1 in EBV-positive ECs and a negative correlation between IFITM1 level and EBV copy number. IFITM1 depletion increases EBV infection and vice versa. Exogenous soluble IFITM1 effectively prevents EBV infection in vitro and in vivo. Furthermore, three-dimensional structure prediction and site-directed mutagenesis demonstrate that IFITM1 interacts with EphA2 via its two specific residues, competitively blocking EphA2 binding to EBV glycoproteins. Finally, YTHDF3, an m6A reader, suppresses IFITM1 via degradation-related DEAD-box protein 5 (DDX5). Thus, this study underscores IFITM1's crucial role in blocking EphA2-mediated EBV entry into ECs, indicating its potential in preventing EBV infection.


Assuntos
Antígenos de Diferenciação , Efrina-A2 , Células Epiteliais , Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Receptor EphA2 , Internalização do Vírus , Humanos , Herpesvirus Humano 4/fisiologia , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Células Epiteliais/virologia , Células Epiteliais/metabolismo , Infecções por Vírus Epstein-Barr/virologia , Infecções por Vírus Epstein-Barr/metabolismo , Receptor EphA2/metabolismo , Efrina-A2/metabolismo , Efrina-A2/genética , Antígenos de Diferenciação/metabolismo , Antígenos de Diferenciação/genética , Animais , Células HEK293 , Ligação Proteica , Camundongos , Linhagem Celular
3.
Viruses ; 15(9)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37766321

RESUMO

This study aimed to develop a model using Epstein-Barr virus (EBV)-associated hub genes in order to predict the prognosis of nasopharyngeal carcinoma (NPC). Differential expression analysis, univariate regression analysis, and machine learning were performed in three microarray datasets (GSE2371, GSE12452, and GSE102349) collected from the GEO database. Three hundred and sixty-six EBV-DEGs were identified, 25 of which were found to be significantly associated with NPC prognosis. These 25 genes were used to classify NPC into two subtypes, and six genes (C16orf54, CD27, CD53, CRIP1, RARRES3, and TBC1D10C) were found to be hub genes in NPC related to immune infiltration and cell cycle regulation. It was shown that these genes could be used to predict the prognosis of NPC, with functions related to tumor proliferation and immune infiltration, making them potential therapeutic targets. The findings of this study could aid in the development of screening and prognostic methods for NPC based on EBV-related features.

4.
Am J Transl Res ; 15(1): 82-98, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36777845

RESUMO

OBJECTIVES: Circular RNAs (circRNAs) are involved in carcinogenesis, though their expression profile in renal cell carcinoma (RCC) is uncharacterized. The tumor suppressor gene miR-145-5p is expressed in RCC tissues, but its relationship with circRNAs is unknown. Thus, we aimed to identify differentially expressed circRNAs in RCC tissues and to explore the interaction between these circRNAs and miR-145 in the development of RCC. METHODS: We performed high-throughput sequencing and bioinformatics analyses to examine the expression pattern of circRNAs in RCC. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were used to functionally annotate differentially expressed circRNAs. Quantitative real-time polymerase chain reaction (qRT-PCR) was used for sequence verification. Small interfering RNAs were employed to investigate the function and mechanism of circRNAs in RCC. The relationship between miR-145-5p and circRNAs was confirmed using luciferase, RNA immunoprecipitation (RIP), and biotin-coupled probe RNA pull-down assays. RESULTS: Fifty-three circRNAs were significantly and differentially expressed in RCC compared to normal control tissue. Bioinformatic analyses indicated that two significantly upregulated circRNAs, circ-AFF2 and circ-ASAP1, had sequences corresponding to miR-145 response elements. Consistently, the luciferase reporter, RIP, and biotin-coupled probe RNA pull-down assays showed that circ-AFF2 and circ-ASAP1 may repress miR-145 by acting as sponges. circ-AFF2 and circ-ASAP1 were highly expressed in RCC patient-derived tumor samples; their overexpression correlated with poor prognosis and low miR-145 levels. Knockdown of circ-AFF2 or circ-ASAP1 in RCC cell lines inhibited proliferation, underscoring their oncogenic function. A circRNA-miRNA network was constructed for RCC using the differentially expressed circRNAs and projected miRNAs. Candidate genes were verified by RT-qPCR and western blot, indicating that circ-AFF2 and circ-ASAP1 may be connected to RCC proliferation and metastasis. CONCLUSION: circ-AFF2 and circ-ASAP1 were upregulated in RCC and likely promote tumor progression by sponging miR-145. Therefore, both circRNAs should be investigated further as potential diagnostic and therapeutic targets for RCC.

5.
Dis Markers ; 2022: 3780391, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35983409

RESUMO

Background: A rising amount of data demonstrates that the epithelial-mesenchymal transition (EMT) in clear cell renal cell carcinomas (ccRCC) is connected with the advancement of the cancer. In order to understand the role of EMT in ccRCC, it is critical to integrate molecules involved in EMT into prognosis prediction. The objective of this project was to establish a prognosis prediction model using genes associated with EMT in ccRCC. Methods: We acquired the mRNA expression profiles and clinical information about ccRCC from TCGA database. In this study, we measured differentially expressed EMT-related genes (DEEGs) by two comparison groups (tumor versus normal tissues; "stages I-II" versus "stages III-IV" tumor tissues). Based on classification and regression random forest models, we identified the most important DEEGs in predicting prognosis. Afterwards, a risk-score model was created using the identified important DEEGs. The prediction ability of the risk-score model was calculated by the area under the curve (AUC). A nomogram for prognosis prediction was built using the risk-score in combination with clinical factors. Results: Among the 72 DEEGs, the classification and regression random forest models identified six hub genes (DKK1, DLX4, IL6, KCNN4, RPL22L1, and SPDEF), which exhibited the highest importance values in both models. Through the expression of these six hub genes, a novel risk-score was developed for the prognosis prediction of ccRCC. ROC curves showed the risk-score performed well in both the training (0.749) and testing (0.777) datasets. According to the survival analysis, individuals who were separated into high/low-risk groups had statistically different outcomes in terms of prognosis. Besides, the risk-score model also showed outstanding ability in assessing the progression of ccRCC after treatment. In terms of nomogram, the concordance index (C-index) was 0.79. Additionally, we predicted the differences in response to chemotherapy drugs among patients from low- and high-risk groups. Conclusion: Gene signatures related to EMT could be useful in predicting ccRCC prognosis.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Renais/patologia , Transição Epitelial-Mesenquimal/genética , Proteínas de Homeodomínio , Humanos , Neoplasias Renais/patologia , Prognóstico , Fatores de Transcrição/genética
6.
Commun Biol ; 5(1): 543, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35668098

RESUMO

Sepsis-induced acute lung injury (ALI) is a serious sepsis complication and the prevailing cause of death. Circulating plasma exosomes might exert a key role in regulating intercellular communication between immunological and structural cells, as well as contributing to sepsis-related organ damage. However, the molecular mechanisms by which exosome-mediated intercellular signaling exacerbate ALI in septic infection remains undefined. Therefore, we investigated the effect of macrophage-derived exosomal APN/CD13 on the induction of epithelial cell necrosis. Exosomal APN/CD13 levels in the plasma of septic mice and patients with septic ALI were found to be higher. Furthermore, increased plasma exosomal APN/CD13 levels were associated with the severity of ALI and fatality in sepsis patients. We found remarkably high expression of APN/CD13 in exosomes secreted by LPS-stimulated macrophages. Moreover, c-Myc directly induced APN/CD13 expression and was packed into exosomes. Finally, exosomal APN/CD13 from macrophages regulated necroptosis of lung epithelial cells by binding to the cell surface receptor TLR4 to induce ROS generation, mitochondrial dysfunction and NF-κB activation. These results demonstrate that macrophage-secreted exosomal APN/CD13 can trigger epithelial cell necroptosis in an APN/CD13-dependent manner, which provides insight into the mechanism of epithelial cell functional disorder in sepsis-induced ALI.


Assuntos
Lesão Pulmonar Aguda , Sepse , Lesão Pulmonar Aguda/complicações , Animais , Antígenos CD13/farmacologia , Células Epiteliais , Humanos , Pulmão , Macrófagos , Camundongos , Necroptose , Sepse/complicações
7.
J Ovarian Res ; 14(1): 162, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789301

RESUMO

BACKGROUND: Resistance to platinum-based chemotherapy is one of the crucial problems in ovarian cancer treatment. Ghrelin, a widely distributed peptide hormone, participates in a series of cancer progression. The aim of this study is to determine whether ghrelin influences the sensitivity of ovarian cancer to cisplatin, and to demonstrate the underlying mechanism. METHODS: The anti-tumor effects of ghrelin and cisplatin were evaluated with human ovarian cancer cells HO-8910 PM in vitro or in vivo. Cell apoptosis and cell cycle were analyzed via flow cytometry assay. The signaling pathway and the expression of cell cycle protein were analyzed with Western Blot. RESULTS: Our results showed that treatment with ghrelin specifically inhibited cell proliferation of HO-8910 PM and sensitized these cells to cisplatin via S phase cell cycle arrest, and enhanced the inhibitory effect of cisplatin on tumor growth of HO-8910 PM derived xenografts in vivo. Treatment with ghrelin inhibited the expression of p-Erk1/2 and p-p38, which was opposite the effect of cisplatin. However, under the treatment of ghrelin, cisplatin treatment exhibited a stronger effect on inhibiting P21 expression, upregulating p-CDK1 and cyclin B1 expression, and blocking cell cycle progression. Mechanistically, ghrelin promoted S phase cell cycle arrest and upregulated p-CDK1 and cyclin B1 expression induced by cisplatin via inhibition of p38. CONCLUSION: This study revealed a specifically inhibitory effect of ghrelin on platinum-resistance via suppressing p-P38 and subsequently promoting p-CDK1 mediated cell cycle arrest in HO-8910 PM.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Grelina/análogos & derivados , Neoplasias Ovarianas/tratamento farmacológico , Animais , Antineoplásicos/uso terapêutico , Proteína Quinase CDC2/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/uso terapêutico , Inibidores Enzimáticos/farmacologia , Feminino , Grelina/farmacologia , Grelina/uso terapêutico , Humanos , Camundongos , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
8.
Oncogene ; 40(3): 603-617, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33203990

RESUMO

Polyamines are critical elements in mammals, but it remains unknown whether adenosyl methionine decarboxylase (AMD1), a rate-limiting enzyme in polyamine synthesis, is required for myeloid leukemia. Here, we found that leukemic stem cells (LSCs) were highly differentiated, and leukemia progression was severely impaired in the absence of AMD1 in vivo. AMD1 was highly upregulated as chronic myeloid leukemia (CML) progressed from the chronic phase to the blast crisis phase, and was associated with the poor prognosis of CML patients. In addition, the pharmacological inhibition of AMD1 by AO476 treatment resulted in a robust reduction of the progression of leukemic cells both in vitro and in vivo. Mechanistically, AMD1 depletion induced loss of mitochondrial membrane potential and accumulation of reactive oxygen species (ROS), resulting in the differentiation of LSCs via oxidative stress and aberrant activation of unfolded protein response (UPR) pathway, which was partially rescued by the addition of polyamine. These results indicate that AMD1 is an essential element in the progression of myeloid leukemia and could be an attractive target for the treatment of the disease.


Assuntos
Adenosilmetionina Descarboxilase/metabolismo , Proliferação de Células , Leucemia Mielogênica Crônica BCR-ABL Positiva/enzimologia , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/enzimologia , Adenosilmetionina Descarboxilase/genética , Animais , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Camundongos , Proteínas de Neoplasias/genética , Espécies Reativas de Oxigênio/metabolismo
9.
Am J Transl Res ; 12(11): 7528-7541, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33312387

RESUMO

MicroRNA-219-5p (miR-219-5p) is a key post-transcriptional regulator of gene expression that is known to regulate cancer progression, but its role in the context of hepatocellular carcinoma (HCC) remains to be fully elucidated. Herein, it was found that this miRNA functions as a tumor suppressor. Specifically, significant decreases in miR-219-5p expression were detected in HCC cells and patient serum samples relative to that found in the serum of 15 healthy people, and it was concluded that miR-219-5p overexpression was sufficient to impair HCC cell proliferation in vitro and vivo and migration in vitro. At the mechanistic level, it was found that miR-219-5p was able to suppress the expression of NEK6 (never in mitosis gene a-related kinase 6), thereby resulting in dysregulated ß-catenin/c-Myc-regulated gene expression. When NEK6 was overexpressed in HCC cells, this was sufficient to reverse the inhibitory impact of miR-219-5p on HCC cell proliferation both in vitro and vivo and metastasis in vitro. Bioinformatics analyses were also conducted, and both miR-219-5p and Nek6 were linked to disease progression in HCC patients with advanced disease. More importantly, the serum specimen data showed that reduced perioperative plasma miR-219-5p correlated significantly with increased risk of early recurrence after curative hepatectomy, whereas it was opposed to NEK6. Together, these findings highlight miR-219-5p as a potentially valuable diagnostic biomarker that can potentially be leveraged to improve clinical outcomes in HCC patients.

10.
J Cell Mol Med ; 24(11): 6362-6372, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32319715

RESUMO

Glioblastoma (GBM) belongs to the high-grade (IV) gliomas with extremely poor prognosis. Accumulating evidence uncovered the key roles of long non-coding RNAs (lncRNAs) in GBM development. This study aimed to determine the biological actions and the clinical relevance of lncRNA MIR4435-2 Host Gene (MIR4435-2HG) in GBM. Data from GEPIA database showed that MIR4435-2HG was up-regulated in GBM tissues and high expression of MIR4435-2HG correlated with shorter overall survival of GBM patients. Further experimental assays verified the up-regulation of MIR4435-2HG in GBM tissues and cell lines. In vitro cell studies and in vivo animal studies showed that knockdown of MIR4435-2HG resulted in the inhibition of GBM cell proliferation and invasion and in vivo tumour growth, while MIR4435-2HG overexpression driven GBM progression. Furthermore, MIR44435-2HG was found to sponge miR-1224-5p and suppress miR-1224-5p expression; overexpression of miR-1224-5p attenuated the enhancement in GBM cell proliferation and invasion induced by MIR4435-2HG overexpression. In a subsequent study, miR-1224-5p was found to target transforming growth factor-beta receptor type 2 (TGFBR2) and repressed TGFBR2 expression, and in vitro assays showed that miR-1224-5p exerted tumour-suppressive effects via targeting TGFBR2. More importantly, TGFRB2 knockdown antagonized hyper-proliferation and invasion of GBM cells with MIR4435-2HG overexpression. Clinically, the down-regulation of miR-1224-5p and up-regulation of TGFBR2 were verified in the GBM clinical samples. Taken together, the present study suggests the oncogenic role of MIR4435-2HG in GBM and underlies the key function of MIR4435-2HG-driven GBM progression via targeting miR-1224-5p/TGFBR2 axis.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioblastoma/genética , Glioblastoma/patologia , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Transdução de Sinais , Animais , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos Endogâmicos BALB C , MicroRNAs/genética , Invasividade Neoplásica , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/genética , Regulação para Cima/genética
11.
Onco Targets Ther ; 12: 10885-10895, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849492

RESUMO

BACKGROUND: Cancer stem cells (CSCs) have been proposed as central drivers of cancer relapse in many cancers. In the present study, we investigated the inhibitory effect of 20(R)-Ginsenoside Rg3 (Rg3R), a major active component of ginseng saponin, on CSC-like cells and the Epithelial-Mesenchymal Transition (EMT) in colorectal cancer (CRC). METHODS: The effects of ginsenoside Rg3R on the colony-forming, migration, invasion, and wound-healing abilities of CRC cells were determined in HT29 and SW620 cell lines in vitro. Further, ginsenoside Rg3R was given intraperitoneally at 5mg/kg of mouse body weight to check its effect on the metastasis of CRC cells in vivo. RESULTS: Ginsenoside Rg3R significantly inhibited CSC properties, but did not affect cell proliferation. Moreover, ginsenoside Rg3R treatment significantly inhibited the motility of CRC cells based on migration, invasion, and wound-healing assays. The inhibitory effects of ginsenoside Rg3R on CRC are potentially mediated by significant down-regulation of the expression of stemness genes and EMT markers in CRC cells in a SNAIL-dependent manner. Furthermore, ginsenoside Rg3R treatment decreased both the number and size of tumor nodules in the liver, lung, and kidney tissues in a metastasis mouse model. CONCLUSION: These findings highlighted the potential use of ginsenoside Rg3R in clinical applications for colorectal cancer treatment.

12.
Cancers (Basel) ; 11(5)2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31137914

RESUMO

Our current understanding of the role of microRNA 551b (miR551b) in the progression of colorectal cancer (CRC) remains limited. Here, studies using both ectopic expression of miR551b and miR551b mimics revealed that miR551b exerts a tumor suppressive effect in CRC cells. Specifically, miR551b was significantly downregulated in both patient-derived CRC tissues and CRC cell lines compared to normal tissues and non-cancer cell lines. Also, miR551b significantly inhibited the motility of CRC cells in vitro, including migration, invasion, and wound healing rates, but did not affect cell proliferation. Mechanistically, miR551b targets and inhibits the expression of ZEB1 (Zinc finger E-box-binding homeobox 1), resulting in the dysregulation of EMT (epithelial-mesenchymal transition) signatures. More importantly, miR551b overexpression was found to reduce the tumor size in a xenograft model of CRC cells in vivo. Furthermore, bioinformatic analyses showed that miR551b expression levels were markedly downregulated in the advanced-stage CRC tissues compared to normal tissues, and ZEB1 was associated with the disease progression in CRC patients. Our findings indicated that miR551b could serve as a potential diagnostic biomarker and could be utilized to improve the therapeutic outcomes of CRC patients.

13.
Int J Cancer ; 144(8): 2020-2032, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30318841

RESUMO

Emerging data indicate that interferon-induced transmembrane protein 1 (IFITM1) plays an important role in many cancers. However, it remains unclear whether IFITM1 is functionally indispensable in nonsmall cell lung cancer (NSCLC). Here, using NSCLC cell lines and patient-derived samples, we show that IFITM1 is essentially required for the progression of NSCLC in vitro and in vivo. Specifically, IFITM1 depletion resulted in a significant reduction in sphere formation, migration, and invasion of NSCLC cells in vitro; these events were inversely correlated with the ectopic expression of IFITM1. In addition, tumor development was significantly impaired in the absence of IFITM1 in vivo. Mechanistically, epidermal growth factor receptor/sex-determining region Y-box 2 (EGFR/SOX2) signaling axis was compromised in the absence of IFITM1, and the ectopic expression of SOX2 partially rescued the defects caused by IFITM1 depletion. More importantly, using 226 patient-derived samples, we demonstrate that a high level of IFITM1 expression is associated with a poor overall survival (OS) rate in adenocarcinoma but not in squamous cell carcinoma. Collectively, these data suggest that IFITM1 is a poor prognostic marker of adenocarcinoma and an attractive target to develop novel therapeutics for NSCLC.


Assuntos
Adenocarcinoma de Pulmão/patologia , Antígenos de Diferenciação/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/patologia , Adenocarcinoma de Pulmão/mortalidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antígenos de Diferenciação/genética , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Linhagem Celular Tumoral , Progressão da Doença , Receptores ErbB/metabolismo , Feminino , Humanos , Pulmão/patologia , Neoplasias Pulmonares/mortalidade , Masculino , Camundongos Endogâmicos NOD , Pessoa de Meia-Idade , RNA Interferente Pequeno/metabolismo , Estudos Retrospectivos , Fatores de Transcrição SOXB1/metabolismo , Transdução de Sinais , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Cancer Med ; 7(11): 5621-5631, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30264477

RESUMO

Ginsenoside Rb2, a saponin from Panax ginseng, has been shown to have many functions. However, the effect of ginsenoside Rb2 on the metastasis of colorectal cancer (CRC) remains unknown. CRC cell lines HT29 and SW620 were used to determine the effects of ginsenoside Rb2 on the colony-forming, migration, invasion, and wound-healing abilities of CRC cells in vitro. Further, ginsenoside Rb2 was given intraperitoneally at 5 mg/kg of mouse body weight to check its effect on the metastasis of CRC cells in vivo. Ginsenoside Rb2 decreased colony-forming ability, migration, invasion, and wound healing of CRC cells in vitro, although it did not affect cell proliferation. As a possible mechanism, we found that ginsenoside Rb2 down-regulated the expression of stemness and Epithelial-mesenchymal transition (EMT)-related genes via the EGFR/SOX2 signaling axis; these were partially rescued by either exogenous EGF treatment or ectopic expression of SOX2. More importantly, ginsenoside Rb2 significantly reduced the number of metastatic nodules in the livers, lungs, and kidneys in a mouse model of metastasis. These results suggest that ginsenoside Rb2 could be used to treat the metastasis of CRC therapeutically or as a supplement.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Colorretais/tratamento farmacológico , Ginsenosídeos/administração & dosagem , Metástase Neoplásica/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Receptores ErbB/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Ginsenosídeos/farmacologia , Células HT29 , Humanos , Injeções Intraperitoneais , Camundongos , Fatores de Transcrição SOXB1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Stem Cells Int ; 2018: 5416923, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29681949

RESUMO

Cancer stem cells (CSCs), also known as tumor-initiating cells (TICs), are suggested to be responsible for drug resistance and cancer relapse due in part to their ability to self-renew themselves and differentiate into heterogeneous lineages of cancer cells. Thus, it is important to understand the characteristics and mechanisms by which CSCs display resistance to therapeutic agents. In this review, we highlight the key features and mechanisms that regulate CSC function in drug resistance as well as recent breakthroughs of therapeutic approaches for targeting CSCs. This promises new insights of CSCs in drug resistance and provides better therapeutic rationales to accompany novel anticancer therapeutics.

16.
Oncotarget ; 7(52): 86039-86050, 2016 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-27852071

RESUMO

Interferon-induced transmembrane protein 1 (IFITM1) has been shown to be implicated in multiple cancers, yet little is known about biological significance of IFITM1 in colorectal cancer. Here, we show that IFITM1 is highly expressed in metastatic colorectal cancer cell lines as well as colorectal patient-derived tumor samples, and its expression is associated with a poor prognosis of the disease. Also, IFITM1 depletion resulted in a significant reduction in the mobility of cancer cell lines, whereas ectopic expression of IFITM1 promoted the migration of cancer cells. Epithelial-mesenchymal transition (EMT) signature was dysregulated by both loss and gain of function of IFITM1, which was partially reverted by Caveolin-1 (CAV1). Therefore, these results suggest that IFITM1 may be a prognostic marker and an attractive target to achieve better therapeutic outcomes in colorectal cancer.


Assuntos
Antígenos de Diferenciação/fisiologia , Neoplasias Colorretais/etiologia , Adulto , Idoso , Caveolina 1/fisiologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/patologia , Progressão da Doença , Transição Epitelial-Mesenquimal , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , RNA Interferente Pequeno/genética
17.
Bioconjug Chem ; 27(5): 1373-81, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27070736

RESUMO

Cell-penetrating peptides (CPPs) have been successfully applied to deliver various functional macromolecules into cells in recent times. Here, we describe a novel CPP designated as hPP3 (KPKRKRRKKKGHGWSR), which were derived from human nuclear body protein SP140-like protein. The location of hPP3-FITC in cells was investigated using the fluorescence microscopy, and the internalization of hPP3 was quantitatively measured using a fluorescence spectrophotometer. The results showed that hPP3-FITC could enter into culturing cells, following a concentration-, incubation time-, serum-, and temperature-dependent manner. Uptake of hPP3-FITC into cells was significantly enhanced by DMSO pretreatment, and inhibited by heparin and the endocytosis inhibitors (chlorpromazine and sodium azide), while the potent lysosomotropic agent, chloroquine, showed small positive effects on hPP3-FITC penetrating. Moreover, hPP3 could mediate functional GFP, KLA, or NBD penetration. The findings of this study showed that human origin peptide hPP3 has the potential to act as a macromolecular carrier penetrating cellular membranes and promising delivery peptide as drug delivery vectors.


Assuntos
Antígenos Nucleares/química , Peptídeos Penetradores de Células/química , Portadores de Fármacos/química , Fatores de Transcrição/química , Sequência de Aminoácidos , Apoptose/efeitos dos fármacos , Peptídeos Penetradores de Células/metabolismo , Dimetil Sulfóxido/química , Liberação Controlada de Fármacos , Células HeLa , Humanos , L-Lactato Desidrogenase/química , Transporte Proteico
18.
Oncotarget ; 7(31): 49075-49090, 2016 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-27081693

RESUMO

Cell-penetrating peptide (CPP) based delivery have provided immense potential for the therapeutic applications, however, most of nonhuman originated CPPs carry the risk of possible cytotoxicity and immunogenicity, thus may restricting to be used. Here, we describe a novel human-derived CPP, denoted hPP10, and hPP10 has cell-penetrating properties evaluated by CellPPD web server, as well as In-Vitro and In-Vivo analysis. In vitro studies showed that hPP10-FITC was able to penetrate into various cells including primary cultured cells, likely through an endocytosis pathway. And functionalized macromolecules, such as green fluorescent protein (GFP), tumor-specific apoptosis inducer Apoptin as well as biological active enzyme GCLC (Glutamate-cysteine ligase, catalytic subunit) can be delivered by hPP10 in vitro and in vivo. Collectively, our results suggest that hPP10 provide a novel and versatile tool to deliver exogenous proteins or drugs for clinical applications as well as reprogrammed cell-based therapy.


Assuntos
Antineoplásicos/farmacologia , Peptídeos Penetradores de Células/farmacologia , Histona Desmetilases com o Domínio Jumonji/farmacologia , Células A549 , Animais , Apoptose , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Endocitose , Fibrose , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Células Hep G2 , Humanos , Substâncias Macromoleculares , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Melanoma Experimental , Camundongos , Peptídeos/farmacologia , Transporte Proteico
19.
Exp Hematol ; 44(5): 322-8, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26930362

RESUMO

Tetraspanins (tetraspans or TM4SF) are a family of integral membrane proteins with four transmembrane helices, a small extracellular loop, and a large extracellular loop. Although tetraspanins are expressed in many types of cells, including immune cells, their biological roles are not fully defined. Nonetheless, recent studies have revealed the important roles of tetraspanins in solid tumors and hematologic malignancies, and expression of tetraspanins is associated with the malignancy of human tumors. Furthermore, genetic mouse models of tetraspanins highlight their contribution to tumorigenesis. In this review, we summarize the implication of tetraspanins in cancer with a special focus on tetraspanin 3 in myeloid leukemia. Our increasing knowledge of tetraspanins and the pathologies that alter their function will undoubtedly inform the rational design of novel cancer therapies.


Assuntos
Neoplasias Hematológicas/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias/metabolismo , Tetraspaninas/metabolismo , Doença Aguda , Animais , Neoplasias Hematológicas/patologia , Humanos , Leucemia Mieloide/metabolismo , Leucemia Mieloide/patologia , Modelos Biológicos , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...