Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Int J Adv Manuf Technol ; : 1-30, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37360662

RESUMO

In parallel with the fast growth of the second-hand aviation market, the importance of promoting remanufacturing analytics has increased. However, end-of-life (EoL) aircraft parts remanufacturing operations are still underdeveloped. Disassembly, the most challenging and central activity in remanufacturing, directly affects the EoL product recovery's profitability and sustainability. Disassembly sequence planning (DSP) devises ordered and purposeful parting for all potentially recoverable components before physical separations. However, the complexities and uncertainties of the EoL conditions engender unpredictable DSP decision inputs. The EoL DSP needs emergent evidence of cost-effective solutions in view of Industry 4.0 (I4.0) implications and stakeholders' benefits. Among the I4.0 technologies, X-reality (XR) particularly hits the mainstream as a cognitive and visual tool consisting of virtual reality, augmented reality, and mixed reality. Recently, with the advance of I4.0 phenomenon, lean management has been theorized and tested through complementary collaboration. Since the research of integrating lean and XR into the EoL DSP is underexplored in literature, XR and lean are investigated as assistive enablers in the DSP. This study has a two-fold purpose: (1) identifying the key concepts of DSP, I4.0, XR, and lean, and extending the literature by reviewing the previous efforts of EoL aircraft remanufacturing, XR-assisted DSP, and XR-lean applications; (2) proposing "Smart Disassembly Sequence Planning (SDSP)" as a new EoL decision-support agenda after analyzing relational advantages and evolving adaptability. The barriers and limitations are highlighted from the recent associated topics, concrete academic information for developing digitalized disassembly analytics is provided, and new trends are added for future disassembly research.

3.
Prev Med ; 173: 107557, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37244462

RESUMO

The anterolateral thigh flap is often used to repair the wound tissue defect. Because it is difficult to carry out the perforating vessels before and after the operation, it is considered to use digital design combined with 3D printing technology to prepare the digital three-dimensional guide plate, and at the same time, the guide plate positioning algorithm is designed according to the error caused by the different placement of the guide plate at the site to be transplanted. First of all, select the patients with jaw defect, make the patient's jaw model, obtain the corresponding plaster working model through 3D scanning, obtain STL data, design the guide plate in combination with Rihnoceros and other software, and print the flap guide plate corresponding to jaw defect with the help of metal powder using 3D printer. Based on sequential CT images, the localization algorithm takes the improved genetic algorithm as the research object, extracts the information of the transplantation area as the parameter space, codes the parameters such as the coordinates of the end points of the flap transplantation, and constructs the target function and fitness function of the transplantation. In the experiment, the soft tissue of the patients with jaw defects can be well repaired based on the guide plate. The positioning algorithm locates the flap graft under the condition of less environmental parameters, and obtains the corresponding diameter parameters.


Assuntos
Procedimentos de Cirurgia Plástica , Humanos , Transplante de Pele , Coxa da Perna/cirurgia , Impressão Tridimensional , Algoritmos , Resultado do Tratamento
4.
Plant Biotechnol J ; 20(12): 2258-2271, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35984919

RESUMO

Plants have evolved complex signalling networks to regulate growth and defence responses under an ever-changing environment. However, the molecular mechanisms underlying the growth-defence tradeoff are largely unclear. We previously reported that rice CALCIUM-DEPENDENT PROTEIN KINASE 18 (OsCPK18) and MITOGEN-ACTIVATED PROTEIN KINASE 5 (OsMPK5) mutually phosphorylate each other and that OsCPK18 phosphorylates and positively regulates OsMPK5 to suppress rice immunity. In this study, we found that OsCPK18 and its paralog OsCPK4 positively regulate plant height and yield-related traits. Further analysis reveals that OsCPK18 and OsMPK5 synergistically regulate defence-related genes but differentially regulate development-related genes. In vitro and in vivo kinase assays demonstrated that OsMPK5 phosphorylates C-terminal threonine (T505) and serine (S512) residues of OsCPK18 and OsCPK4, respectively. The kinase activity of OsCPK18T505D , in which T505 was replaced by aspartic acid to mimic T505 phosphorylation, displayed less calcium sensitivity than that of wild-type OsCPK18. Interestingly, editing the MAPK phosphorylation motif in OsCPK18 and its paralog OsCPK4, which deprives OsMPK5-mediated phosphorylation but retains calcium-dependent activation of kinase activity, simultaneously increases rice yields and immunity. This editing event also changed the last seven amino acid residues of OsCPK18 and attenuated its binding with OsMPK5. This study presents a new regulatory circuit that fine tunes the growth-defence tradeoff by modulating OsCPK18/4 activity and suggests that CRISPR/Cas9-mediated engineering phosphorylation pathways could simultaneously improve crop yield and immunity.


Assuntos
Edição de Genes , Oryza , Oryza/genética , Fosforilação , Cálcio , Proteínas Quinases Ativadas por Mitógeno
5.
Front Genome Ed ; 4: 825236, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35481279

RESUMO

Canonical CRISPR-Cas9 genome editing technique has profoundly impacted the fields of plant biology, biotechnology, and crop improvement. Since non-homologous end joining (NHEJ) is usually considered to generate random indels, its high efficiency mutation is generally not pertinent to precise editing. Homology-directed repair (HDR) can mediate precise editing with supplied donor DNA, but it suffers from extreme low efficiency in higher plants. Therefore, precision editing in plants will be facilitated by the ability to predict NHEJ repair outcome and to improve HDR efficiency. Here, we report that NHEJ-mediated single nucleotide insertion at different rice genes is predictable based on DNA sequences at the target loci. Three mutation prediction tools (inDelphi, FORECasT, and SPROUT) have been validated in the rice plant system. We also evaluated the chimeric guide RNA (cgRNA) and Cas9-Retron precISe Parallel Editing via homologY (CRISPEY) strategies to facilitate donor template supply for improving HDR efficiency in Nicotiana benthamiana and rice. However, neither cgRNA nor CRISPEY improved plant HDR editing efficiency in this study. Interestingly, our data indicate that tethering of 200-250 nucleotides long sequence to either 5' or 3' ends of guide RNA did not significantly affect Cas9 cleavage activity.

6.
Plant Dis ; 106(8): 2039-2045, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35350901

RESUMO

'Candidatus Phytoplasma trifolii' is a cell wall-less phytopathogenic bacterium that infects many agriculturally important plant species such as alfalfa, clover, eggplant, pepper, potato, and tomato. The phytoplasma is responsible for repeated outbreaks of potato purple top (PPT) and potato witches' broom (PWB) that occurred along the Pacific Coast of the United States since 2002, inflicting significant economic losses. To effectively manage these phytoplasmal diseases, it is important to develop diagnostic tools for specific, sensitive, and rapid detection of the pathogens. Here we report the development of a DNA endonuclease targeted CRISPR trans reporter (DETECTR) assay that couples isothermal amplification and Cas12a transcleavage of fluorescent oligonucleotide reporter for highly sensitive and specific detection of 'Candidatus Phytoplasma trifolii'-related strains responsible for PPT and PWB. The DETECTR assay was capable of specifically detecting the 16S-23S ribosomal DNA intergenic transcribed spacer sequences from PPT- and PWB-diseased samples at the attomolar sensitivity level. Furthermore, the DETECTR strategy allows flexibility to capture assay outputs with fluorescent microplate readers or lateral flow assays for potentially high-throughput and/or field-deployable disease diagnostics.


Assuntos
Phytoplasma , Solanum tuberosum , Sistemas CRISPR-Cas , DNA Bacteriano/genética , Filogenia , Phytoplasma/genética , Doenças das Plantas/microbiologia , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solanum tuberosum/microbiologia
7.
Mol Plant ; 15(2): 243-257, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34619328

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-mediated gene editing is revolutionizing plant research and crop breeding. Here, we present an effective and streamlined pipeline for arrayed CRISPR library construction and demonstrate it is suitable for small- to large-scale genome editing in plants. This pipeline introduces artificial PCR fragment-length markers for distinguishing guide RNAs (gRNAs) (FLASH), and a group of 12 constructs harboring different FLASH tags are co-transformed into plants each time. The identities of gRNAs in Agrobacterium mixtures and transgenic plants can therefore be read out by detecting the FLASH tags, a process that requires only conventional PCR and gel electrophoresis rather than sequencing. We generated an arrayed CRISPR library targeting all 1,072 members of the receptor-like kinase (RLK) family in rice. One-shot transformation generated a mutant population that covers gRNAs targeting 955 RLKs, and 74.3% (710/955) of the target genes had three or more independent T0 lines. Our results indicate that the FLASH tags act as bona fide surrogates for the gRNAs and are tightly (92.1%) associated with frameshift mutations in the target genes. In addition, the FLASH pipeline allows for rapid identification of unintended editing events without corresponding T-DNA integrations and generates high-order mutants of closely related RLK genes. Furthermore, we showed that the RLK mutant library enables rapid discovery of defense-related RLK genes. This study introduces an effective pipeline for arrayed CRISPR library construction and provides genome-wide rice RLK mutant resources for functional genomics.


Assuntos
Oryza , Sistemas CRISPR-Cas/genética , Genoma de Planta/genética , Oryza/genética , Melhoramento Vegetal , Plantas Geneticamente Modificadas/genética
8.
Plant Direct ; 5(6): e00328, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34142002

RESUMO

Root metaxylem vessels are responsible for axial water transport and contribute to hydraulic architecture. Variation in metaxylem vessel size and number can impact drought tolerance in crop plants, including rice, a crop that is particularly sensitive to drought. Identifying and validating candidate genes for metaxylem development would aid breeding efforts for improved varieties for drought tolerance. We identified three transcription factor candidate genes that potentially regulate metaxylem vessel size and number in rice based on orthologous annotations, published expression data, and available root and drought-related QTL data. Single gene knockout mutants were generated for each candidate using CRISPR-Cas9 genome editing. Root metaxylem vessel area and number were analyzed in 6-week-old knockout mutants and wild-type plants under well-watered and drought conditions in the greenhouse. Compared with wild type, LONESOME HIGHWAY (OsLHW) mutants had fewer, smaller metaxylem vessels in shallow roots and more, larger vessels in deep roots in drought conditions, indicating that OsLHW may be a repressor of drought-induced metaxylem plasticity. The AUXIN RESPONSE FACTOR 15 mutants showed fewer but larger metaxylem vessel area in well-watered conditions, but phenotypes were inconsistent under drought treatment. ORYZA SATIVA HOMEBOX 6 (OSH6) mutants had fewer, smaller metaxylem vessels in well-watered conditions with greater effects on xylem number than size. OSH6 mutants had larger shoots and more, deeper roots than the wild type in well-watered conditions, but there were no differences in performance under drought between mutants and wild type. Though these candidate gene mutants did not exhibit large phenotypic effects, the identification and investigation of candidate genes related to metaxylem traits in rice deepen our understanding of metaxylem development and are needed to facilitate incorporation of favorable alleles into breeding populations to improve drought stress tolerance.

9.
Phytopathology ; 111(12): 2375-2382, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33944602

RESUMO

Citrus huanglongbing (HLB) or greening is one of the most devastating diseases of citrus worldwide. Sensitive detection of its causal agent, 'Candidatus Liberibacter asiaticus' (CLas), is critical for early diagnosis and successful management of HLB. However, current nucleic acid-based detection methods are often insufficient for the early detection of CLas from asymptomatic tissue and unsuitable for high-throughput and field-deployable diagnosis of HLB. Here we report the development of the Cas12a-based DNA endonuclease-targeted CRISPR trans reporter (DETECTR) assay for highly specific and sensitive detection of CLas nucleic acids from infected samples. The DETECTR assay, which targets the five-copy nrdB gene specific to CLas, couples isothermal amplification with Cas12a transcleavage of a fluorescent reporter oligonucleotide and enables detection of CLas nucleic acids at the attomolar level. The DETECTR assay was capable of specifically detecting the presence of CLas across different infected citrus, periwinkle, and psyllid samples and shown to be compatible with lateral flow assay technology for potential field-deployable diagnosis. The improvements in detection sensitivity and flexibility of the DETECTR technology position the assay as a potentially suitable tool for early detection of CLas in infected regions.


Assuntos
Citrus , Hemípteros , Rhizobiaceae , Animais , Sistemas CRISPR-Cas , Liberibacter , Doenças das Plantas , Rhizobiaceae/genética
10.
Phytopathology ; 111(7): 1080-1090, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33356427

RESUMO

New tools and advanced technologies have played key roles in facilitating basic research in plant pathology and practical approaches for disease management and crop health. Recently, the CRISPR/Cas (clustered regularly interspersed short palindromic repeats/CRISPR-associated) system has emerged as a powerful and versatile tool for genome editing and other molecular applications. This review aims to introduce and highlight the CRISPR/Cas toolkit and its current and future impact on plant pathology and disease management. We will cover the rapidly expanding horizon of various CRISPR/Cas applications in the basic study of plant-pathogen interactions, genome engineering of plant disease resistance, and molecular diagnosis of diverse pathogens. Using the citrus greening disease as an example, various CRISPR/Cas-enabled strategies are presented to precisely edit the host genome for disease resistance, to rapidly detect the pathogen for disease management, and to potentially use gene drive for insect population control. At the cutting edge of nucleic acid manipulation and detection, the CRISPR/Cas toolkit will accelerate plant breeding and reshape crop production and disease management as we face the challenges of 21st century agriculture.


Assuntos
Sistemas CRISPR-Cas , Patologia Vegetal , Sistemas CRISPR-Cas/genética , Gerenciamento Clínico , Genoma de Planta , Melhoramento Vegetal , Doenças das Plantas
11.
Mol Breed ; 41(2): 13, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37309479

RESUMO

Dissection of gene function requires sophisticated tools to monitor gene expression. Gene tagging with epitope peptides and fluorescent protein tags is a routine method to investigate protein expression using tag-specific antibodies and western blotting with tedious blotting and immunodetection steps. Nanoluciferase (NanoLuc) exhibits extremely bright bioluminescence and is engineered as a sensitive genetic reporter. Due to its small size and high bioluminescent activity, NanoLuc could be engineered to function as a novel protein tag that permits direct detection of tagged protein in the gel matrix (in-gel detection). In this study, we developed Gateway compatible vectors to tag proteins with NanoLuc in plants. We also tailored the in-gel detection conditions which can detect NanoLuc-tagged MPK3 from as low as 200 pg of total protein extracts. Compared to FLAG tag and western blotting-based detection, NanoLuc tag and optimized in-gel detection exhibit increased detection sensitivity but omit the blotting and immunodetection steps. We also demonstrated versatile applications of the NanoLuc-based in-gel detection method for protein expression analysis, probing protein-protein interactions by coimmunoprecipitation, and in vivo protein phosphorylation detection with Phos-tag gel electrophoresis. Finally, NanoLuc was used to tag the gene at its endogenous locus using the wheat dwarf virus replicon and CRISPR/Cas9-mediated gene targeting. Our data suggest that NanoLuc tag and in-gel detection permit fast detection of tagged protein with high sensitivity. The versatile NanoLuc toolkit and convenient in-gel detection method are expected to facilitate in vitro and in vivo protein analysis for plant functional genomics. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-021-01210-7.

12.
Ann Bot ; 126(5): 929-942, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32575125

RESUMO

BACKGROUND AND AIMS: Vitamin E (tocochromanol) is a lipid-soluble antioxidant and an essential nutrient for human health. Among cereal crops, barley (Hordeum vulgare) contains a high level of vitamin E, which includes both tocopherols and tocotrienols. Although the vitamin E biosynthetic pathway has been characterized in dicots, such as Arabidopsis, which only accumulate tocopherols, knowledge regarding vitamin E biosynthesis in monocots is limited because of the lack of functional mutants. This study aimed to obtain gene knockout mutants to elucidate the genetic control of vitamin E composition in barley. METHODS: Targeted knockout mutations of HvHPT and HvHGGT in barley were created with CRISPR/Cas9-enabled genome editing. High-performance liquid chromatography (HPLC) was performed to analyse the content of tocochromanol isomers in transgene-free homozygous Hvhpt and Hvhggt mutants. KEY RESULTS: Mutagenesis efficiency among T0 regenerated plantlets was 50-65 % as a result of two simultaneously expressed guide RNAs targeting each gene; most of the mutations were stably inherited by the next generation. The transgene-free homozygous mutants of Hvhpt and Hvhggt exhibited decreased grain size and weight, and the HvHGGT mutation led to a shrunken phenotype and significantly lower total starch content in grains. HPLC analysis revealed that targeted mutation of HvHPT significantly reduced the content of both tocopherols and tocotrienols, whereas mutations in HvHGGT completely blocked tocotrienol biosynthesis in barley grains. Transient overexpression of an HvHPT homologue in tobacco leaves significantly increased the production of γ- and δ-tocopherols, which may partly explain why targeted mutation of HvHPT in barley grains did not eliminate tocopherol production. CONCLUSIONS: Our results functionally validated that HvHGGT is the only committed gene for the production of tocotrienols, whereas HvHPT is partly responsible for tocopherol biosynthesis in barley.


Assuntos
Hordeum , Tocotrienóis , Sistemas CRISPR-Cas/genética , Edição de Genes , Hordeum/genética , Humanos , Tocoferóis , Vitamina E
13.
aBIOTECH ; 1(2): 106-118, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36304716

RESUMO

The CRISPR/Cas9-mediated base editing technology can efficiently generate point mutations in the genome without introducing a double-strand break (DSB) or supplying a DNA donor template for homology-directed repair (HDR). In this study, adenine base editors (ABEs) were used for rapid generation of precise point mutations in two distinct genes, OsWSL5, and OsZEBRA3 (Z3), in both rice protoplasts and regenerated plants. The precisely engineered point mutations were stably inherited to subsequent generations. These single nucleotide alterations resulted in single amino acid changes and associated wsl5 and z3 phenotypes as evidenced by white stripe leaf and light green/dark green leaf pattern, respectively. Through selfing and genetic segregation, transgene-free, base edited wsl5 and z3 mutants were obtained in a short period of time. We noticed a novel mutation (V540A) in Z3 locus could also mimic the phenotype of Z3 mutation (S542P). Furthermore, we observed unexpected non- A/G or T/C mutations in the ABE editing window in a few of the edited plants. The ABE vectors and the method from this study could be used to simultaneously generate point mutations in multiple target genes in a single transformation and serve as a useful base editing tool for crop improvement as well as basic studies in plant biology.

14.
aBIOTECH ; 1(2): 123-134, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36304720

RESUMO

The Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein system (CRISPR/Cas) has recently become the most powerful tool available for genome engineering in various organisms. With efficient and proper expression of multiple guide RNAs (gRNAs), the CRISPR/Cas system is particularly suitable for multiplex genome editing. During the past several years, different CRISPR/Cas expression strategies, such as two-component transcriptional unit, single transcriptional unit, and bidirectional promoter systems, have been developed to efficiently express gRNAs as well as Cas nucleases. Significant progress has been made to optimize gRNA production using different types of promoters and RNA processing strategies such as ribozymes, endogenous RNases, and exogenous endoribonuclease (Csy4). Besides being constitutively and ubiquitously expressed, inducible and spatiotemporal regulations of gRNA expression have been demonstrated using inducible, tissue-specific, and/or synthetic promoters for specific research purposes. Most recently, the emergence of CRISPR/Cas ribonucleoprotein delivery methods, such as engineered nanoparticles, further revolutionized transgene-free and multiplex genome editing. In this review, we discuss current strategies and future perspectives for efficient expression and engineering of gRNAs with a goal to facilitate CRISPR/Cas-based multiplex genome editing.

15.
Biodes Res ; 2020: 8051764, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-37849899

RESUMO

Human life intimately depends on plants for food, biomaterials, health, energy, and a sustainable environment. Various plants have been genetically improved mostly through breeding, along with limited modification via genetic engineering, yet they are still not able to meet the ever-increasing needs, in terms of both quantity and quality, resulting from the rapid increase in world population and expected standards of living. A step change that may address these challenges would be to expand the potential of plants using biosystems design approaches. This represents a shift in plant science research from relatively simple trial-and-error approaches to innovative strategies based on predictive models of biological systems. Plant biosystems design seeks to accelerate plant genetic improvement using genome editing and genetic circuit engineering or create novel plant systems through de novo synthesis of plant genomes. From this perspective, we present a comprehensive roadmap of plant biosystems design covering theories, principles, and technical methods, along with potential applications in basic and applied plant biology research. We highlight current challenges, future opportunities, and research priorities, along with a framework for international collaboration, towards rapid advancement of this emerging interdisciplinary area of research. Finally, we discuss the importance of social responsibility in utilizing plant biosystems design and suggest strategies for improving public perception, trust, and acceptance.

16.
Trends Biotechnol ; 38(2): 136-141, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31526571

RESUMO

SpCas9 creates blunt end cuts in the genome and generates random and unpredictable mutations through error-prone repair systems. However, a growing body of recent evidence points instead to Cas9-induced staggered end generation, nonrandomness of mutations, and the predictability of editing outcomes using machine learning models.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Aprendizado de Máquina , Mutação , Reparo do DNA por Junção de Extremidades , Reparo do DNA/genética , Modelos Genéticos
17.
Exp Ther Med ; 19(1): 287-293, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31853301

RESUMO

This study explored how interleukin-8 (IL-8) causes acute lung injury (ALI) through pulmonary surfactant protein A (SP-A) and surfactant protein B (SP-B). Serum was collected from 53 ALI patients and further 56 healthy subjects who underwent physical examination. The IL-8, SP-A, and SP-B levels were determined using enzyme-linked immunosorbent assay (ELISA). An ALI model was constructed using lipopolysaccharide (LSP)-induced normal A549 cells. siRNA was employed to interfere with the expression of IL-8, SP-A and SP-B. Western blot analysis was carried out to determine the protein levels, and MTT assay to determine the cell activity. In addition, co-immunoprecipitation (Co-IP) assay was used to verify the interaction between IL-8, SP-A and SP-B. ALI patients showed high expression of serum IL-8, and low expression of SP-A and SP-B, and IL-8 was negatively correlated with SP-A and SP-B, respectively. LSP-induced normal A549 cells showed increased expression of IL-8 and decreased expression of SP-A and SP-B. Silencing IL-8 led to increased expression levels of SP-A, SP-B and Bcl2, decreased expression levels of caspase-9, caspase-3, Bax, TNF-α, IL-17 and IL-1ß, reduced cell apoptosis rate, and enhanced cell viability. Silencing SP-A and SP-B resulted in increased expression of IL-8, caspase-9, caspase-3, Bax, TNF-α, IL-17 and IL-1ß, and decreased expression of Bcl2. Co-IP assay revealed that IL-8 could interact with SP-A and SP-B, respectively. IL-8 induces apoptosis by inhibiting SP-A and SP-B, and intensifies cellular inflammatory reaction, leading eventually to ALI.

18.
Plant Dis ; 103(11): 2714-2732, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31560599

RESUMO

Among the biotic constraints of common mushroom (Agaricus bisporus) production, bacterial blotch is considered the most important mushroom disease in terms of global prevalence and economic impact. Etiology and management of bacterial blotch has been a major concern since its original description in 1915. Although Pseudomonas tolaasii is thought to be the main causal agent, various Pseudomonas species, as well as organisms from other genera have been reported to cause blotch symptoms on mushroom caps. In this review, we provide an updated overview on the etiology, epidemiology, and management strategies of bacterial blotch disease. First, diversity of the causal agent(s) and utility of high throughput sequencing-based approaches in the precise characterization and identification of blotch pathogen(s) is explained. Further, due to the limited options for use of conventional pesticides in mushroom farms against blotch pathogen(s), we highlight the role of balanced threshold of relative humidity and temperature in mushroom farms to combat the disease in organic and conventional production. Additionally, we discuss the possibility of the use of biological control agents (either antagonistic mushroom-associated bacterial strains or bacteriophages) for blotch management as one of the sustainable approaches for 21st century agriculture. Finally, we aim to elucidate the association of mushroom microbiome in cap development and productivity on one hand, and blotch incidence/outbreaks on the other hand.


Assuntos
Agaricus , Microbiologia de Alimentos , Pseudomonas , Microbiologia de Alimentos/tendências
19.
Curr Genet ; 65(5): 1185-1197, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30993412

RESUMO

Bax inhibitor-1 (BI-1), an evolutionarily conserved protein, is a suppressor of cell death induced by the proapoptotic protein Bax and is involved in the response to biotic and abiotic stress in animals, plants and yeast. Rice false smut caused by Ustilaginoidea virens is one of the destructive rice diseases worldwide. Although BI-1 proteins are widely distributed across filamentous fungi, few of them are functionally characterized. In this study, we identified a BI-1 protein in U. virens, UvBI-1, which contains a predicted Bax inhibitor-1-like family domain and could suppress the cell death induced by Bax. By co-transformation of the CRISPR/Cas9 construct along with donor DNA fragment containing the hygromycin resistance gene, we successfully generated Uvbi-1 deletion mutants. The UvBI-1 deletion showed an increase in mycelia vegetative growth and conidiation, suggesting this gene acts as a negative regulator of the growth and conidiation. In addition, the Uvbi-1 mutants exhibited higher sensitivity to osmotic and salt stress, hydrogen peroxide stress, and cell wall or membrane stress than the wild-type strain. Furthermore, UvBI-1 deletion was found to cause increased production of secondary metabolites and loss of pathogenicity of U. virens. Taken together, our results demonstrate that UvBI-1 plays a negative role in mycelial growth and conidiation, and is critical for stress tolerance, cell wall integrity, secondary metabolites production and pathogenicity of U. virens. Therefore, this study provides new evidence on the conserved function of BI-1 among fungal organisms and other species.


Assuntos
Proteínas de Membrana/genética , Micélio , Oryza/genética , Oryza/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Sequência de Aminoácidos , Parede Celular , Deleção de Genes , Interações Hospedeiro-Patógeno/genética , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Mutação , Fenótipo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Metabolismo Secundário , Estresse Fisiológico/genética
20.
Trends Biotechnol ; 37(10): 1121-1142, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30995964

RESUMO

Genome editing with CRISPR/Cas has rapidly gained popularity. Base editing, a new CRISPR/Cas-based approach, can precisely convert one nucleotide to another in DNA or RNA without inducing a double-strand DNA break (DSB). A combination of catalytically impaired nuclease variants with different deaminases has yielded diverse base-editing platforms that aim to address the key limitations such as specificity, protospacer adjacent motif (PAM) compatibility, editing window length, bystander editing, and sequence context preference. Because new base editors significantly reduce unintended editing in the genome, they hold great promise for treating genetic diseases and for developing superior agricultural crops. We review here the development of various base editors, assess their technical advantages and limitations, and discuss their broad applications in basic research, medicine, and agriculture.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Adenina , Animais , Pareamento de Bases , Códon de Terminação , Citosina , Expressão Gênica , Terapia Genética/métodos , Humanos , Mutação INDEL , Mutação Puntual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...