Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Plant Physiol ; 287: 154023, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37343484

RESUMO

Accumulation of toxic elements by plants from polluted soil can induce the excessive formation of reactive oxygen species (ROS), thereby causing retarded plants' physiological attributes. Several researchers have remediated soil using various forms of zerovalent iron; however, their residual impacts on oxidative stress indicators and health risks in leafy vegetables have not yet been investigated. In this research, nanoscale zerovalent iron supported with coconut-husk biochar (nZVI-CHB) was synthesized through carbothermal reduction process using Fe2O3 and coconut-husk. The stabilization effects of varying concentrations of nZVI-CHB and CHB (250 and 500 mg/kg) on cadmium (Cd) and lead (Pb) in soil were analyzed, and their effects on toxic metals induced oxidative stress, physiological properties, and antioxidant defence systems of the Brassica rapa plant were also checked. The results revealed that the immobilization of Pb and Cd in soil treated with CHB was low, leading to a higher accumulation of metals in plants grown. However, nZVI-CHB could significantly immobilize Pb (57.5-62.12%) and Cd (64.1-75.9%) in the soil, leading to their lower accumulation in plants below recommended safe limits and eventually reduced carcinogenic risk (CR) and hazard quotient (HQ) for both Pb and Cd in children and adults below the recommended tolerable range of <1 for HQ and 10-6 - 10-4 for CR. Also, a low dose of nZVI-CHB significantly mitigated toxic metal-induced oxidative stress in the vegetable plant by inhibiting the toxic metals uptake and increasing antioxidant enzyme activities. Thus, this study provided another insightful way of converting environmental wastes to sustainable adsorbents for soil remediation and proved that a low-dose of nZVI-CHB can effectively improve soil quality, plant physiological attributes and reduce the toxic metals exposure health risk below the tolerable range.

2.
Chemosphere ; 325: 138380, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36907492

RESUMO

Efficient, stable, and easily producible electrodes are useful for treating dye wastewater through electrochemical oxidation. In this study, an Sb-doped SnO2 electrode with TiO2 nanotubes as the middle layer (TiO2-NTs/SnO2-Sb) was prepared through an optimized electrodeposition process. Analyses of the coating morphology, crystal structure, chemical state, and electrochemical properties revealed that tightly packed TiO2 clusters provided a larger surface area and more contact points, which is conducive to reinforcing the binding of SnO2-Sb coatings. Compared with a Ti/SnO2-Sb electrode without a TiO2-NT interlayer, the catalytic activity and stability of the TiO2-NTs/SnO2-Sb electrode significantly improved (P < 0.05), as reflected by the 21.8% increase in the amaranth dye decolorization efficiency and 200% increase in the service life. The effects of current density, pH, electrolyte concentration, initial amaranth concentration, and the interaction between various combinations of parameters on the electrolysis performance were investigated. Based on response surface optimization, the maximum decolorization efficiency of the amaranth dye could reach 96.2% within 120 min under the following set of optimized parameter values: 50 mg L-1 amaranth concentration, 20 mA cm-2 current density, and 5.0 pH. A potential degradation mechanism of the amaranth dye was proposed based on the experimental results of a quenching test, ultraviolet-visible spectroscopy, and high-performance liquid chromatography-mass spectrometry. This study provides a more sustainable method for fabricating SnO2-Sb electrodes with TiO2-NT interlayers to treat refractory dye wastewater.


Assuntos
Nanotubos , Poluentes Químicos da Água , Águas Residuárias , Corante Amaranto , Compostos de Estanho/química , Poluentes Químicos da Água/química , Oxirredução , Titânio/química , Eletrodos , Nanotubos/química
3.
Sci Total Environ ; 871: 162023, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36739032

RESUMO

Soil pollution caused by complex organochloride mixtures has been increasing in many parts of the world in recent years; as a result, countless numbers of people are exposed to dangerous pollutions; hence, the treatment of organochlorides-polluted soils is gaining considerable attention. In this study, the potential of unactivated peroxymonosulfate (KHSO5) in remediating soil co-contaminated with trichlorophenol, para-dichlorobenzene, and para-chloro-meta-cresol was investigated. In addition, the treatment's collateral effect on critical soil properties was explored. The result revealed that treating 10 g of soil with 20 mL of 5 mM KHSO5 for 60 min could oxidize 70.49% of the total pollutants. The pH of the soil was decreased following the treatment. The significant decrease, (p < 0.05), in the soil organic matter following the remediation has affected cation exchange capacity, and available nitrogen. It was also observed that the treatment reduced the ß-glucosidase, urease, invertase, and cellulase activities significantly, (p < 0.05). The treatment, on the other hand, brought negligible effects on available phosphorus, available potassium, and particle size distribution. The phytotoxicity tests, which included seed germination and root elongation and soil respiration tests revealed that the treatment did not leach toxins into the treated soil. The treatment method was found to be relatively ecofriendly and cost effective.


Assuntos
Poluentes Ambientais , Recuperação e Remediação Ambiental , Poluentes do Solo , Humanos , Solo/química , Poluentes do Solo/análise , Poluição Ambiental/análise , Compostos Orgânicos
4.
PLoS One ; 18(2): e0281756, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36791126

RESUMO

The extensive use of engineered nanoparticles (ENPs) has raised concerns about their potentially harmful effects on the ecosystem. Despite previous reports of a variety of individual ENPs, the mutual effects of ENPs when used in combination were not well understood. In this study, we first investigated the effects of different sizes and concentrations of ZnO nanoparticles (ZnO NPs) or multi-walled carbon nanotubes (MWCNTs) on the growth performance of Arabidopsis thaliana seedlings. Then, two concentrations of ZnO NP (40 and 50 mg/L) with a diameter of 90 nm and MWCNTs (100 and 500 mg/L) with an outer diameter of 40-60 nm were used to evaluate their respective or simultaneous phytotoxicity to Arabidopsis. The results showed that seedlings exposed to either ZnO NPs or MWCNTs exhibited significant phytotoxic symptoms. ZnO NPs caused stronger inhibitory effects than MWCNTs on several plant growth indices, including reduced root length, chlorophyll content, and increased ROS concentration. When applied together, the concurrent effects of ZnO NPs and MWCNTs on Arabidopsis seedlings appeared to be more negative, as evidenced not only by the further deterioration of several growth indices but also by their synergistic or additive regulation of the activities of several antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR). Moreover, qRT-PCR analysis revealed that in the presence of ZnO NPs and MWCNTs, the expression of genes important for maintaining cellular ROS homeostasis was differentially regulated in shoots and roots of Arabidopsis seedlings. Overall, our data may provide new insights into how plants respond to more than one type of nanomaterial and help us better understand the associated environmental risks.


Assuntos
Arabidopsis , Nanotubos de Carbono , Óxido de Zinco , Óxido de Zinco/farmacologia , Arabidopsis/genética , Arabidopsis/metabolismo , Nanotubos de Carbono/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Ecossistema , Plântula/metabolismo , Raízes de Plantas/metabolismo , Estresse Oxidativo , Homeostase
5.
Environ Pollut ; 316(Pt 1): 120519, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36347415

RESUMO

Agricultural application contributes major consumption of antibiotics worldwide. As veterinary antibiotics are poorly metabolized by animals, most of them end up in agricultural waste, which is increasingly subject to thermal treatment, such as torrefaction, pyrolysis, etc. However, there is a lack of research on their thermal decomposition mechanisms and products elucidation. Therefore, this study investigated the thermal decomposition of four major veterinary antibiotics groups (ß-lactams, tetracyclines, fluoroquinolones, sulfonamides) with emphasis on their thermal stability, structural transformation and antibacterial activity. Results show that thermal treatment can remove the parent antibiotics with their antibacterial activity except for gatifloxacin (GAT). Although the parent form of GAT was fully removed at 200 °C, its products showed significant antibacterial activity against E. coli. We present novel evidence that the PhO-CH3 chemical bond on GAT preferentially brake to generate methyl radical, which underwent a substitution reaction at the para position of phenol. This reaction also occurred during the thermal decomposition of antibiotic analogues, balofloxacin and moxifloxacin, whose thermolysis products also showed significant antibacterial activity. Furthermore, these thermolysis products may present potentially cardiotoxic and pose higher risks to human health than their parent forms, based on the comparison with a group of drugs withdrawn from the market.


Assuntos
Antibacterianos , Anti-Infecciosos , Animais , Humanos , Antibacterianos/química , Escherichia coli/metabolismo , Tetraciclinas , Gatifloxacina
6.
Environ Pollut ; 314: 120205, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36210595

RESUMO

Wastewater treatment plants have been identified as an important gathering spot for nanoplastics, possibly having unintended impacts on important biological nutrient removal processes. The underlying effects of long-term exposure of activated sludge to nanoplastics on nutrient removal and the mechanisms involved remain unclear. This study investigated the effect of polystyrene nanoplastics (Nano-PS) on the treatment performance and microbial community structure, and network in activated sludge. The results indicate that 1000 µg/L Nano-PS had chronic negative effects on the treatment performance in a continuous test over 140 days. Nano-PS had no significant impact in the earlier stages (0-50 days). However, as exposure time increased, the removal efficiencies of chemical oxygen demand, total phosphorous, and total nitrogen (TN) decreased by 2.7, 33.2, and 23.5%, respectively, in the later stages (87-132 days). These adverse impacts further manifested as a change in the topological characteristics, forming a smaller scale, lower complexity, and weaker transfer efficiency of the microbial network. Moreover, the scale and complexity of subnetwork-nitrogen removal bacteria and subnetwork-nitrifier were inhibited, leading to an increase in the effluent TN and NH4+-N. The decreased modules and connectors (keystone taxa) likely caused the deterioration of treatment performance and functional diversity, which was consistent with the change in PICRUSt results. Less competition, denser nodes, and more complex module structures were induced as a strategy to mediate the long-term stress of nano-PS. To our knowledge, this is the first attempt to explore the long-term effects of nano-PS on the microbial interaction network of activated sludge, laying an experimental foundation for reducing the risks associated with nanoplastics.


Assuntos
Microplásticos , Esgotos , Esgotos/química , Poliestirenos , Nitrogênio/toxicidade , Nitrogênio/análise , Interações Microbianas , Reatores Biológicos/microbiologia , Eliminação de Resíduos Líquidos/métodos
7.
Sci Total Environ ; 845: 157260, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35820524

RESUMO

Owing to their widespread application and use, microplastics (MPs) and antibiotics coexist in the sewage treatment systems. In this study, the effects and mechanisms of the combined stress of MPs and ciprofloxacin (CIP) on phosphorus removal by phosphorus-accumulating organisms (PAOs) were investigated. This study found that the four types of MPs and CIP exhibited different antagonistic effects on the inhibition of phosphorus removal by PAO. MPs reduced the effective concentration of CIP through adsorption and thus reduced its toxicity, which was affected by the biofilms on MPs. In addition, CIP may cause PAO to produce more extracellular polymeric substances, which reduces the physical and oxidative stress of MPs on PAO. Our results are helpful as they increase the understanding of the effects of complex emerging pollutants in sewage systems and propose measures to strengthen the biological phosphorus removal in sewage treatment processes.


Assuntos
Shewanella , Purificação da Água , Antibacterianos/farmacologia , Reatores Biológicos , Ciprofloxacina , Microplásticos , Fósforo , Plásticos , Esgotos , Purificação da Água/métodos
8.
Chemosphere ; 307(Pt 1): 135703, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35842038

RESUMO

Limited carbon (low C/N) and salinity stress affect the stability of wastewater treatment plants. However, the effect of salinity shock on activated sludge systems with low C/N ratio wastewater remains unclear. An anaerobic/aerobic/anoxic sequencing batch reactor treating low C/N wastewater was established to investigate the effects of salinity shock on system performance, nitrogen removal pathways, microbial community, interactions, and assembly. The results showed that the effluent COD concentration could maintain a stable level, and the average COD removal efficiency was 94.9%. However, total nitrogen removal was significantly inhibited. With the addition of salinity, efficiencies of total nitrogen removal and simultaneous nitrification and denitrification decreased from 91.4 to 73.8% to 86.7 and 39.7%, respectively; however, nitrite reduction capacity increased by 25.4%. After removing salinity, ammonia oxidation capacity further deteriorated, evidenced by the increase in effluent NH4+-N from 8.0 to 11.8 mg/L. During the salinity shock, partial nitrification became the main nitrogen removal pathway because of the inhibition of Nitrospira and high nitrite accumulation ratio (>99.0%). Molecular ecological network analysis indicated that increased competition, decreased total modules, and disappearance of keystone taxa were related to the deterioration of ammonia oxidation capacity and simultaneous nitrification and denitrification. Moreover, the abundant denitrification module and increased denitrifiers contributed to the increase in nitrite reduction capacity. Salinity shock under low C/N conditions resulted in a stronger stochastic community assembly. This study provided information that can help enable stable operations for treating low C/N wastewater.


Assuntos
Microbiota , Esgotos , Amônia/metabolismo , Reatores Biológicos , Carbono , Desnitrificação , Nitrificação , Nitritos , Nitrogênio/metabolismo , Salinidade , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias
9.
Sci Total Environ ; 807(Pt 3): 151042, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34673074

RESUMO

The misuse of both antibiotics and plastics significantly increases the environmental pollution problems associated with these contaminants. Moreover, microplastics can adsorb other pollutants in the environment. However, the mechanisms of antibiotic adsorption by degradable and nondegradable microplastics are not completely understood. In this study, we investigated the environmental behavior of norfloxacin (NOR) using polybutylene succinate (PBS), which is a degradable microplastic, and compared it with conventional microplastics, polystyrene (PS) and polyethylene (PE). The order of adsorption capacity was PS > PBS â‰« PE. The adsorption behavior fitted well with the pseudo-second-order kinetic and Langmuir isotherm models, indicating monolayer adsorption. The process is thermodynamically endothermic and non-spontaneous and is controlled by chemical and physical mechanisms, including π-π conjugation, hydrogen bonds, ion exchange, and electrostatic interactions. The adsorption capacity of microplastics was higher when the solution pH was around the pKa value of NOR than at other pH values. Ionic strength and dissolved organic matter inhibited the adsorption process. For PS and PBS, the amount of NOR adsorbed onto MPs initially decreased and then increased with the increase of coexisting heavy metal ions. Zn2+ and Pb2+ could promote the adsorption of NOR by PE. This study reveals the interaction mechanisms between microplastics and antibiotics and provides a more comprehensive theoretical basis for an ecological environmental risk assessment of different microplastics.


Assuntos
Microplásticos , Plásticos , Adsorção , Antibacterianos , Matéria Orgânica Dissolvida , Norfloxacino , Polietileno
10.
Carbohydr Polym ; 274: 118555, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34702488

RESUMO

Chromium pollution is a serious environmental problem given that like most heavy metals, Cr tends to persist and accumulate in the environment. In this study, diethylenetriaminepentaacetic acid-thiourea-modified magnetic chitosan (DTCS-Fe3O4) was synthesized for use as an adsorbent for Cr(VI) removal from aqueous solutions. The effects of various treatment conditions on the Cr(VI) adsorption performance of DTCS-Fe3O4 composite as well as the kinetics were elucidated. Moreover, by observing the structure and morphology of DTCS-Fe3O4, the possible Cr(VI) adsorption mechanism was proposed. DTCS-Fe3O4 exhibited a maximum adsorption capacity of 321.3 ± 6.0 mg g-1. Further, the adsorption process, which followed the Langmuir model for monolayer adsorption, was predominantly governed by chemical adsorption, and could be fitted using the pseudo-second-order kinetics model. Furthermore, given its ease of preparation, low cost, and remarkable performance, it is expected that the DTCS-Fe3O4 composite would find wide practical application in the removal of toxic Cr(VI) from wastewater.

11.
Environ Pollut ; 291: 118239, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34592328

RESUMO

Calcium peroxide (CaO2) has been proven to oxidize various organic pollutants when they exist as a single class of compounds. However, there is a lack of research on the potential of unactivated CaO2 to treat mixed chlorinated organic pollutants in soils. This study examined the potential of CaO2 in treating soils co-contaminated with p-dichlorobenzene (p-DCB) and p-chloromethane cresol (PCMC). The effects of CaO2 dosage and treatment duration on the rate of degradation were investigated. Furthermore, the collateral effects of the treatment on treated soil characteristics were studied. The result showed that unactivated CaO2 could oxidize mixed chlorinated organic compounds in wet soils. More than 69% of the pollutants in the wet soil were mineralized following 21 days of treatment with 3% (w/w) CaO2. The hydroxyl radicals played a significant role in the degradation process among the other decomposition products of hydrogen peroxide. Following the oxidation process, the treated soil pH was increased due to the formation of calcium hydroxide. Soil organic matter, cation exchange capacity, soil organic carbon, total nitrogen, and certain soil enzyme activities of the treated soil were decreased. However, the collateral effects of the system on electrical conductivity, available phosphorus, and particle size distribution of the treated soil were not significant. Likewise, since no significant release of heavy metals was seen in the treated soil matrix, the likelihood of metal ions as co-pollutants after treatment was low. Therefore, CaO2 can be a better alternative for treating industrial sites co-contaminated with chlorinated organic compounds.


Assuntos
Poluentes do Solo , Solo , Carbono , Peróxido de Hidrogênio , Peróxidos
12.
J Hazard Mater ; 416: 125532, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-33823479

RESUMO

Antibiotics and nanoparticles, which are emerging contaminants, can occur simultaneously in biological wastewater treatment systems, potentially resulting in complex interactive effects. This study investigated the effects of individual and complex zinc oxide nanoparticles (nZnO) and antibiotics (quinolone and sulfonamide), on the Shewanella strain used to remove phosphorus (PO43-), metabolic processes, as well as its complexing and toxicity mechanisms. The inhibition of PO43- removal increased from 30.7% to 100.0% with increased nZnO concentrations (half maximal effective concentration (EC50) = 1.1 mg Zn/L) by affecting poly-p and glycogen metabolites. The combined exposure to nZnO and ciprofloxacin/norfloxacin (CIP/NOR) had a significant antagonistic effect on the removal of PO43- and on the metabolism of poly-p and glycogen in phosphate-accumulating organisms (PAOs), whereas the complexing of sulfonamide and nZnO had no significant additional effect. Thus, the complexing of nanoparticles and antibiotics exhibited different toxicity effects from the antibiotic structure-based complex reactions. These results can be used to improve wastewater treatment processes and reduce risks associated with wastewater discharge.


Assuntos
Shewanella , Purificação da Água , Óxido de Zinco , Antibacterianos/toxicidade , Fósforo , Óxido de Zinco/toxicidade
13.
J Environ Manage ; 285: 112063, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33588171

RESUMO

The advanced oxidation process (AOP) based on activated Peroxymonosulfate (PMS) has been attracting many people in the field of soil and water remediation in many ways while ignoring the shortcomings. The high cost of activators, and energy input, as well as the expense to separate the catalyst and transition metal reducing agent from the treated soil, were some disadvantages of using activated PMS. Based on the above rationales of problems related to the use of activated PMS, this study aimed to study the performance of using unactivated peroxymonosulfate for the advanced oxidation process to remediate soil contaminated by trichloroethylene (TCE), and to evaluate the synergistic effect on selected soil properties after treatment. The results showed that within 45 min, a single injection of 5 mM PMS at its initial pH value can degrade 86.90% of the total TCE in the soil. However, when PMS was continuously injected, the removal rate was increased to 95.25%. The direct reaction of TCE and PMS was the main cause of degradation. PMS can degrade TCE in a wide pH range (pH 3-11), but the maximum degradation was at pH = 2.9 (the initial pH of PMS). After the treatment, the soil organic matter (SOM) was degraded significantly. In contrast, FTIR, SEM, and hydrometer tests conducted on the soil showed that the treatment had no significant effect on the functional groups and particle size distribution of the treated soil. The study on the effect of the treatment on the concentration of bioavailable heavy metals in the treated soil showed that only manganese and copper metals were significantly increased after the treatment. According to the results obtained in this study, it is more beneficial and feasible to use unactivated peroxymonosulfate in the advanced oxidation process when remediating soil contaminated by chlorinated organic matter.


Assuntos
Tricloroetileno , Poluentes Químicos da Água , Humanos , Oxirredução , Peróxidos , Solo , Poluentes Químicos da Água/análise
14.
Bioresour Technol ; 319: 124067, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33035865

RESUMO

The individual and combined effects of sulfamethoxazole (SMX) and oxytetracycline (OTC) on an enhanced biological phosphorus removal (EBPR) system was investigated. OTC at 5 mg/L resulted in filamentous bulking with a collapse of EBPR system. P removal decreased to 44.8% and COD was mostly removed during the aerobic phase. SMX and OTC had antagonistic effects in EBPR system. The inhibitory effect of SMX and SMX + OTC on P removal, COD removal, glycogen transformation and extracellular polymeric substances content was reversible with prolonged operation, accompanied with increase of polyphosphate accumulating organisms. The presence of nitrification inhibitor allylthiourea, high pH and low tetX abundance limited the removal of SMX and OTC. The bacterial community structure, antibiotic resistance genes abundances and genes functions were also investigated by metagenomic analysis. The results of this study offer insights into the individual and combined environmental risks of SMX and OTC, and their impact on EBPR.


Assuntos
Oxitetraciclina , Antibacterianos/farmacologia , Reatores Biológicos , Resistência Microbiana a Medicamentos , Fósforo , Sulfametoxazol
15.
Artigo em Inglês | MEDLINE | ID: mdl-32092868

RESUMO

Biochar (BC)-supported nanoscale zero-valent iron (nZVI-BC) was investigated as a heterogeneous Fenton-like activator to degrade the antibiotic ornidazole (ONZ). The characterization of nZVI-BC indicated that BC could enhance the adsorption of ONZ and reduce the aggregation of nZVI. Thus, nZVI-BC had a higher removal efficiency (80.1%) than nZVI and BC. The effects of parameters such as the nZVI/BC mass ratio, pH, H2O2 concentration, nZVI-BC dose, and temperature were systematically investigated, and the removal of ONZ followed a pseudo-second-order kinetic model. Finally, possible pathways of ONZ in the oxidation process were proposed. The removal mechanism included the adsorption of ONZ onto the surface of nZVI-BC, the generation of •OH by the reaction of nZVI with H2O2, and the oxidation of ONZ. Recycling experiments indicated that the nZVI-BC/H2O2 system is a promising alternative for the treatment of wastewater containing ONZ.


Assuntos
Carvão Vegetal , Ornidazol , Poluentes Químicos da Água , Adsorção , Antibacterianos , Peróxido de Hidrogênio , Ferro , Ornidazol/química
16.
Artigo em Inglês | MEDLINE | ID: mdl-31936459

RESUMO

Controlling wastewater pollution from centralized industrial zones is important for reducing overall water pollution. Microbial community structure and diversity can adversely affect wastewater treatment plant (WWTP) performance and stability. Therefore, we studied microbial structure, diversity, and metabolic functions in WWTPs that treat industrial or municipal wastewater. Sludge microbial community diversity and richness were the lowest for the industrial WWTPs, indicating that industrial influents inhibited bacterial growth. The sludge of industrial WWTP had low Nitrospira populations, indicating that influent composition affected nitrification and denitrification. The sludge of industrial WWTPs had high metabolic functions associated with xenobiotic and amino acid metabolism. Furthermore, bacterial richness was positively correlated with conventional pollutants (e.g., carbon, nitrogen, and phosphorus), but negatively correlated with total dissolved solids. This study was expected to provide a more comprehensive understanding of activated sludge microbial communities in full-scale industrial and municipal WWTPs.


Assuntos
Bactérias/classificação , Microbiota , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Bactérias/metabolismo , Carbono/metabolismo , Cidades , Desnitrificação , Resíduos Industriais , Nitrificação , Nitrogênio/metabolismo , Fósforo/metabolismo
17.
Chemosphere ; 246: 125681, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31896014

RESUMO

Tetracycline (TC) as an emerging contaminant has raised serious concerns about its toxicity and removal in wastewater treatment processes. The more toxic transformation products of TC, 4-epitetracycline (ETC), anhydrotetracycline (ATC) and 4-epianhydrotetracycline (EATC) are also widely detected. This study investigated the antibacterial and bactericidal activity of TC, ETC, ATC, EATC against Shewanella sp, using Escherichia coli and Pseudomonas aeruginosa strains as quality controls. Further, batch assays were conducted to investigate the inhibition of these antibiotics on the phosphorus removal of the Shewanella strain, and removal mechanisms of TC and its transformation products (TCs). The inhibition on phosphorus removal by the Shewanella strain at 20 mg L-1 was in the order of ATC > EATC > TC > ETC. COD removal, poly-P accumulation and glycogen synthesis by the Shewanella strain were also inhibited. Biodegradation was the main removal mechanism of TC and ETC, while adsorption was the main one of ATC and EATC. This study helps to further understand the structure-activity relationship of TC.


Assuntos
Antibacterianos/toxicidade , Fósforo/metabolismo , Shewanella/efeitos dos fármacos , Tetraciclina/toxicidade , Adsorção , Compostos Heterocíclicos , Shewanella/metabolismo , Tetraciclina/análise , Tetraciclinas/análise , Águas Residuárias
18.
Environ Sci Technol ; 53(15): 9024-9033, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31282670

RESUMO

Monochloramine (NH2Cl) can be irradiated by UV to create an advanced oxidation condition (i.e., UV/NH2Cl) for the elimination of organic micropollutants (OMPs) from source water. However, information in retrospective studies was scarce on how UV/NH2Cl performance would be affected by the water matrix and OMP molecular structures. In this study, the degradation of five representative OMPs, including triclosan, carbamazepine, sulfamethoxazole, estradiol (E2), and ethinylestradiol (EE2), was examined in different water matrices. All OMPs were rapidly removed by UV/NH2Cl but exhibited different degradation mechanisms. Although •OH, •Cl, and direct photolysis mainly contributed to the overall degradation of OMPs in buffered nanopure water, the contribution of reactive nitrogen species (RNS) generated from the photolysis of NH2Cl was not negligible in the degradation of E2 and EE2. A phenolic group was identified as the moiety reactive toward RNS. Based on quantitative analysis of the impact on OMP degradation from cosolutes (including Cl-, HCO3-, NOM) as well as pH and NH2Cl doses, we developed a kinetic model for the prediction of OMP degradation in complex water matrices. In environmental water matrices, the performance and radical contributions in UV/NH2Cl and UV/H2O2 systems were taken into comparison, which showed faster degradation of OMPs and a more significant contribution of CO3•- in the UV/NH2Cl process.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Peróxido de Hidrogênio , Oxirredução , Fotólise , Estudos Retrospectivos , Raios Ultravioleta
19.
Bioresour Technol ; 273: 454-461, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30469135

RESUMO

This work investigated the individual and combined effects of zinc oxide, norfloxacin, and sulfamethazine on sludge anaerobic digestion-associated methane production, protein and carbohydrate metabolism, and microbial diversity. Norfloxacin and sulfamethazine (500 mg/kg) did not inhibit methane production, but inhibited its production rate. Zinc oxide nanoparticles with antibiotics inhibited hydrolysis, fermentation, and methanogenesis over varying digestion periods. Complex pollution had a greater impact on methane production than zinc oxide alone, with acute, synergistic toxicity to methanogenesis over short periods. Complex pollution also had varying effects on bacterial and archaeal communities during digestion. These results aid understanding of the toxicity of emerging contaminants in sludge digestion, with the potential to improve pollution removal and reduce associated risks.


Assuntos
Nanopartículas , Norfloxacino/química , Esgotos/microbiologia , Sulfametazina/química , Anaerobiose , Antibacterianos/metabolismo , Archaea/metabolismo , Bactérias/metabolismo , Hidrólise , Norfloxacino/metabolismo , Sulfametazina/metabolismo , Óxido de Zinco/química
20.
Sci Total Environ ; 647: 1-10, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30077839

RESUMO

Wastewater generated from an industrial park is usually characterized by large volumes, variation in composition, and high pollutant concentrations, and is generally toxic and difficult to biodegrade. Wastewater treatment at an industrial park includes several stages, namely, pretreatment inside factories (F-WWTPs), centralized wastewater treatment (C-WWTP), and reclaimed wastewater treatment (R-WWTP), during which the treatment efficiencies are mutually restricted. Therefore, water pollution control in industrial parks is extremely challenging. In this study, models, including those for pollutant reduction and operating costs, were established considering the F-WWTPs, C-WWTP, and R-WWTP stages at an industrial park. A Monte Carlo model was used to simulate the treatment and solve the above-mentioned models. Consequently, the characteristic values, including the extent of pollutant reduction, concentration of pollutants in the effluent, and operation costs, were predicted under optimal operating conditions of the wastewater treatment system. The established model was verified and applied to industrial park A in the Tianjin Economic-Technological Development Area in China. Based on the comparison of the above-mentioned optimization values with the sampled values as well as the theoretical analysis, the status of the wastewater treatment system in the industrial park was quantitatively evaluated to diagnose pertinent issues. Additionally, optimization and reformation strategies were proposed. Therefore, the established model can achieve optimization of pollution reduction and operation costs for the entire industrial park, thus contributing to industrial wastewater pollution control and water quality improvement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...