Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Med Sci ; 43(6): 1084-1095, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37924385

RESUMO

OBJECTIVE: Post-stroke cognitive impairment (PSCI) develops in approximately one-third of stroke survivors and is associated with ingravescence. Nonetheless, the biochemical mechanisms underlying PSCI remain unclear. The study aimed to establish an ischemic mouse model by means of transient unilateral middle cerebral artery occlusions (MCAOs) and to explore the biochemical mechanisms of p25/cyclin-dependent kinase 5 (CDK5)-mediated tau hyperphosphorylation on the PSCI behavior. METHODS: Cognitive behavior was investigated, followed by the detection of tau hyperphosphorylation, mobilization, activation of kinases and/or inhibition of phosphatases in the lateral and contralateral cerebrum of mice following ischemia in MACO mice. Finally, we treated HEK293/tau cells with oxygen-glucose deprivation (OGD) and a CDK5 inhibitor (Roscovitine) or a GSK3ß inhibitor (LiCl) to the roles of CDK5 and GSK3ß in mediating ischemia-reperfusion-induced tau phosphorylation. RESULTS: Ischemia induced cognitive impairments within 2 months, as well as causing tau hyperphosphorylation and its localization to neuronal somata in both ipsilateral and contralateral cerebra. Furthermore, p25 that promotes CDK5 hyperactivation had significantly higher expression in the mice with MCAO than in the shamoperation (control) group, while the expression levels of protein phosphatase 2 (PP2A) and the phosphorylation level at Tyr307 were comparable between the two groups. In addition, the CDK5 inhibitor rescued tau from hyperphosphorylation induced by OGD. CONCLUSION: These findings demonstrate that upregulation of CDK5 mediates tau hyperphosphorylation and localization in both ipsilateral and contralateral cerebra, contributing to the pathogenesis of PSCI.


Assuntos
Cérebro , Disfunção Cognitiva , Animais , Humanos , Camundongos , Cérebro/metabolismo , Cognição , Disfunção Cognitiva/etiologia , Quinase 5 Dependente de Ciclina/genética , Quinase 5 Dependente de Ciclina/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Células HEK293 , Isquemia , Proteínas tau/genética , Proteínas tau/metabolismo
2.
Curr Med Sci ; 40(1): 18-27, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32166661

RESUMO

Alzheimer's disease (AD) shows cognitive impairments in clinic, which is multifactorial with different etiopathogenic mechanisms such as Aß deposition, neuroinflammation and neuronal dystrophy involved. Therefore, multi-targets drugs with neuroprotective, anti-amyloidogenic and anti-inflammatory properties will be effective in AD treatment. Epigallocatechin-3-gallate (EGCG) possesses a broad spectrum of pharmacological activities in the prevention and treatment of multiple neurodegenerative diseases. In the present study, we showed that oral administration of EGCG (50 mg/kg) for 4 months significantly attenuated the cognitive deficits in APP/PS1 transgenic mice, which served as AD model. Moreover, EGCG induced an improvement in dendritic integrity and expression levels of synaptic proteins in the brain of APP/PS1 mice. And EGCG exerted obvious anti-inflammatory effects, which was manifested by alleviating microglia activation, decreasing pro-inflammatory cytokine (IL-1ß) and increasing anti-inflammatory cytokines (IL-10, IL-13). Furthermore, ß-amyloid (Aß) plaques were markedly reduced in the hippocampus of 6-month old APP/PS1 mice after EGCG treatment. In conclusion, these findings indicate that EGCG improves AD-like cognitive impairments through neuroprotective, anti-amyloidogenic and anti-inflammatory effects, thus is a promising therapeutic candidate for AD.


Assuntos
Doença de Alzheimer/psicologia , Precursor de Proteína beta-Amiloide/genética , Catequina/análogos & derivados , Disfunção Cognitiva/tratamento farmacológico , Fármacos Neuroprotetores/administração & dosagem , Presenilina-1/genética , Administração Oral , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Catequina/administração & dosagem , Catequina/farmacologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Fármacos Neuroprotetores/farmacologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...