Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurogastroenterol Motil ; 30(3): 332-342, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38972868

RESUMO

Background/Aims: Ineffective esophageal motility (IEM) is common in patients with gastroesophageal reflux disease (GERD) and can be associated with poor esophageal contraction reserve on multiple rapid swallows. Alterations in the esophageal microbiome have been reported in GERD, but the relationship to presence or absence of contraction reserve in IEM patients has not been evaluated. We aim to investigate whether contraction reserve influences esophageal microbiome alterations in patients with GERD and IEM. Methods: We prospectively enrolled GERD patients with normal endoscopy and evaluated esophageal motility and contraction reserve with multiple rapid swallows during high-resolution manometry. The esophageal mucosa was biopsied for DNA extraction and 16S ribosomal RNA gene V3-V4 (Illumina)/full-length (Pacbio) amplicon sequencing analysis. Results: Among the 56 recruited patients, 20 had normal motility (NM), 19 had IEM with contraction reserve (IEM-R), and 17 had IEM without contraction reserve (IEM-NR). Esophageal microbiome analysis showed a significant decrease in microbial richness in patients with IEM-NR when compared to NM. The beta diversity revealed different microbiome profiles between patients with NM or IEM-R and IEM-NR (P = 0.037). Several esophageal bacterial taxa were characteristic in patients with IEM-NR, including reduced Prevotella spp. and Veillonella dispar, and enriched Fusobacterium nucleatum. In a microbiome-based random forest model for predicting IEM-NR, an area under the receiver operating characteristic curve of 0.81 was yielded. Conclusions: In symptomatic GERD patients with normal endoscopic findings, the esophageal microbiome differs based on contraction reserve among IEM. Absent contraction reserve appears to alter the physiology and microbiota of the esophagus.

2.
mSystems ; 7(3): e0017222, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35670534

RESUMO

Antibiotics used as growth promoters in livestock and animal husbandry can be detected in animal-derived food. Epidemiological studies have indicated that exposure to these antibiotic residues in food may be associated with childhood obesity. Herein, the effect of exposure to a residual dose of tylosin-an antibiotic growth promoter-on host metabolism and gut microbiota was explored in vivo. Theoretical maximal daily intake (TMDI) doses of tylosin were found to facilitate high-fat-diet-induced obesity, induce insulin resistance, and perturb gut microbiota composition in mice. The obesity-related phenotypes were transferrable to germfree recipient mice, indicating that the effects of a TMDI dose of tylosin on obesity and insulin resistance occurred mainly via alteration of the gut microbiota. Tylosin TMDI exposure restricted to early life, the critical period of gut microbiota development, altered the abundance of specific bacteria related to host metabolic homeostasis later in life. Moreover, early-life exposure to tylosin TMDI doses was sufficient to modify the ratio of primary to secondary bile acids, thereby inducing lasting metabolic consequences via the downstream FGF15 signaling pathway. Altogether, these findings demonstrate that exposure to very low doses of antibiotic residues, whether continuously or in early life, could exert long-lasting effects on host metabolism by altering the gut microbiota and its metabolites. IMPORTANCE This study demonstrates that even with limited exposure in early life, a residual dose of tylosin might cause long-lasting metabolic disturbances by altering the gut microbiota and its metabolites. Our findings reveal that the gut microbiota is susceptible to previously ignored environmental factors.


Assuntos
Microbioma Gastrointestinal , Resistência à Insulina , Obesidade Infantil , Animais , Camundongos , Antibacterianos/farmacologia , Tilosina/farmacologia , Ácidos e Sais Biliares/farmacologia , Exposição Dietética
3.
Clin Nutr ; 41(7): 1491-1500, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35667265

RESUMO

BACKGROUND AND AIMS: Despite animal studies revealing a causal link between the gut microbiota and skeletal muscle mass, the role of the gut microbiome and its metabolites in humans having low muscle mass remains unclear. METHODS: Eighty-eight subjects older than 65 years were measured for sarcopenia-related parameters, including body composition, grip strength, gait speed and flexibility. Participants were divided into normal muscle mass group (NM, n = 52) and low muscle mass group (LM, n = 36) and fresh fecal samples were collected for metagenome and short chain fatty acids (SCFAs) analysis. RESULTS: The richness and evenness of gut microbiota diversity were significantly decreased in the subjects with low muscle mass, including observed ASVs, Shannon and Chao 1 index. A significant difference of gut microbiota profile was noted between NM group and LM group. The Firmicutes/Bacteroidetes ratio was significantly reduced in the LM group. A significant decrease in the abundance of a SCFA-producer, Marvinbryantia spp., whereas a remarkable enrichment of a flavonoid degrader, Flavonifractor spp., was observed in the LM elders. Comparing with the NM group, the fecal butyrate significantly diminished in the LM group and correlated with skeletal muscle mass index. CONCLUSIONS: This is the first study that demonstrates the reduced fecal butyrate in elders with low muscle mass and highlights the associated gut microbiome changes. The identified gut microbial features and fecal butyrate level may serve as potential biomarkers for early detection of sarcopenic patients.


Assuntos
Microbioma Gastrointestinal , Sarcopenia , Idoso , Animais , Butiratos , Ácidos Graxos Voláteis/metabolismo , Fezes , Microbioma Gastrointestinal/fisiologia , Humanos , Músculo Esquelético/fisiologia
4.
NPJ Biofilms Microbiomes ; 8(1): 4, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35087050

RESUMO

Cardiovascular disease (CVD) is strongly associated with the gut microbiota and its metabolites, including trimethylamine-N-oxide (TMAO), formed from metaorganismal metabolism of ʟ-carnitine. Raw garlic juice, with allicin as its primary compound, exhibits considerable effects on the gut microbiota. This study validated the benefits of raw garlic juice against CVD risk via modulation of the gut microbiota and its metabolites. Allicin supplementation significantly decreased serum TMAO in ʟ-carnitine-fed C57BL/6 J mice, reduced aortic lesions, and altered the fecal microbiota in carnitine-induced, atherosclerosis-prone, apolipoprotein E-deficient (ApoE-/-) mice. In human subjects exhibiting high-TMAO production, raw garlic juice intake for a week reduced TMAO formation, improved gut microbial diversity, and increased the relative abundances of beneficial bacteria. In in vitro and ex vivo studies, raw garlic juice and allicin inhibited γ-butyrobetaine (γBB) and trimethylamine production by the gut microbiota. Thus, raw garlic juice and allicin can potentially prevent cardiovascular disease by decreasing TMAO production via gut microbiota modulation.


Assuntos
Aterosclerose , Alho , Microbioma Gastrointestinal , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Dissulfetos , Humanos , Metilaminas , Camundongos , Camundongos Endogâmicos C57BL , Óxidos , Ácidos Sulfínicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...