Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1414075, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966221

RESUMO

Background: Oxidative Balance Score (OBS) is a novel indicator of the overall antioxidant/oxidant balance, providing a comprehensive reflection of the body's overall oxidative stress status, with higher OBS suggesting more substantial antioxidant exposures. We aimed to investigate the possible relationship between OBS with serum uric acid (SUA) and hyperuricemia. Methods: Data utilized in this study were sourced from the 2011-2018 National Health and Nutrition Examination Survey (NHANES). Participants under 18 years old, those with ≤16 complete data out of 20 OBS components, incomplete serum uric acid data, and missing covariates were excluded from the analysis. OBS was computed by evaluating 16 nutrients and 4 lifestyle factors, encompassing 5 pro-oxidants and 15 antioxidants, guided by a priori knowledge of their relationship with oxidative stress. Results: A total of 1,5096 individuals were included in our analysis with 49.7% being male, and an average age of 49.05 ± 17.56 years. The mean OBS was 19.76 ± 7.17. Hyperuricemia was present in 19.28% of participants. Due to the right-skewed distribution of the OBS, a natural log transformation was applied to address this issue, and Quartiles of lnOBS 1, 2, 3, and 4 were 1.10-2.56 (N=3526), 2.64-2.94 (N=3748), 3.00-3.22 (N=4026), and 3.26-3.61 (N=3796), respectively. Multivariable logistic regression showed that higher lnOBS quantiles were correlated with lower serum uric acid levels. Compared with the lowest lnOBS quantile, participants in the highest lnOBS quantile had a significant serum uric acid decrease of 16.94 µmol/L for each unit increase in lnOBS (ß=-16.94, 95% CI: -20.44, -13.45). Similar negative associations were observed in the second-highest (ß=-8.07, 95% CI: -11.45, -4.69) and third-highest (ß=-11.69, 95% CI: -15.05, -8.34) lnOBS quantiles. The adjusted odds ratios (ORs) for hyperuricemia in Quartiles 1, 2, 3, and 4 were 1.00, 0.84 (95% CI: 0.75, 0.95), 0.78 (95% CI: 0.69, 0.88), and 0.62 (95% CI: 0.55, 0.71), respectively. Compared to Quartile 1, participants in Quartile 4 had a 38% lower prevalence of hyperuricemia. Subgroup analysis and interaction test showed that there was a significant dependence of sex between OBS and serum uric acid (p for interaction <0.05), but not hyperuricemia (p for interaction >0.05). Subgroup analysis stratified by age, BMI, hypertension, diabetes, and hyperlipidemia showed there is no significant dependence on these negative correlations (all p for interaction >0.05). Conclusions: The serum uric acid levels and prevalence of hyperuricemia in US adults exhibited a negative association with OBS. By exploring this connection, our research aims to gain a better understanding of how oxidative balance affects the prevalence of hyperuricemia. This could provide valuable insights for developing preventive strategies and interventions for hyperuricemia. Additional large-scale prospective studies are required to explore the role of OBS in hyperuricemia further.


Assuntos
Hiperuricemia , Inquéritos Nutricionais , Estresse Oxidativo , Ácido Úrico , Humanos , Hiperuricemia/sangue , Hiperuricemia/epidemiologia , Ácido Úrico/sangue , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Idoso , Antioxidantes/metabolismo , Estudos Transversais , Biomarcadores/sangue , Estados Unidos/epidemiologia
2.
Materials (Basel) ; 17(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38998332

RESUMO

The external bonding (EB) of fiber-reinforced polymer (FRP) is a usual flexural reinforcement method. When using the technique, premature debonding failure still remains a factor of concern. The effect of incorporating multi-wall carbon nanotubes (MWCNTs) in epoxy resin on the flexural behavior of reinforced concrete (RC) beams strengthened with basalt fiber-reinforced polymer (BFRP) sheets was investigated through four-point bending beam tests. Experimental results indicated that the flexural behavior was significantly improved by the MWCNT-modified epoxy. The BFRP sheets bonded by the MWCNT-modified epoxy more effectively mitigated the debonding failure of BFRP sheets and constrained crack development as well as enhanced the ductility and flexural stiffness of strengthened beams. When the beam was reinforced with two-layer BFRP sheets, the yielding load, ultimate load, ultimate deflection, post-yielded flexural stiffness, energy absorption capacity and deflection ductility of beams strengthened using MWCNT-modified epoxy increased by 7.4%, 8.3%, 18.2%, 22.6%, 29.1% and 14.3%, respectively, in comparison to the beam strengthened using pure epoxy. It could be seen in scanning electron microscopy (SEM) images that the MWCNTs could penetrate into concrete and their pull-out and crack bridging consumed more energy, which remarkably enhanced the flexural behavior of the strengthened beams. Finally, an analytical model was proposed for calculating characteristic loads and characteristic deflections of RC beams strengthened with FRP sheets, which indicated a reasonably good correlation with the experimental results.

3.
Front Cell Dev Biol ; 12: 1417242, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903534

RESUMO

Migrasomes are organelles produced by migrating cells that form on retraction fibers and are released during cell migration. Migrasomes are involved in physiological and pathological processes such as intercellular communication, cell homeostasis maintenance, signal transduction, disease occurrence and development, and cancer metastasis. In addition, methods and techniques for studying migrasomes are constantly evolving. Here, we review the discovery, formation process, regulation, and known functions of migrasomes, summarize the commonly used specific markers of migrasomes, and the methods for observing migrasomes. Meanwhile, this review also discusses the potential applications of migrasomes in physiological processes, disease diagnosis, treatment, and prognosis, and looks forward to their wider application in biomedicine. In addition, the study of migrasomes will also reveal a new perspective on the mechanism of intercellular communication and promote the further development of life science.

4.
Brain ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701344

RESUMO

The implication of 5-hydroxytryptamine 2C receptor (5-HT2CR) in depression is a topic of debate, and the underlying mechanisms remain largely unclear. We now elucidate hippocampal excitation-inhibition (E/I) balance underlies the regulatory effects of 5-HT2CR in depression. Molecular biological analyses showed that chronic mild stress (CMS) reduced the expression of 5-HT2CR in hippocampus. We revealed that inhibition of 5-HT2CR induced depressive-like behaviors, reduced GABA release and shifted the E/I balance towards excitation in CA3 pyramidal neurons by using behavioral analyses, microdialysis coupled with mass spectrum, and electrophysiological recording. Moreover, 5-HT2CR modulated neuronal nitric oxide synthase (nNOS)-carboxy-terminal PDZ ligand of nNOS (CAPON) interaction through influencing intracellular Ca2+ release, as determined by fiber photometry and coimmunoprecipitation. Notably, disruption of nNOS-CAPON by specific small molecule compound ZLc-002 or AAV-CMV-CAPON-125C-GFP, abolished 5-HT2CR inhibition-induced depressive-like behaviors, as well as the impairment in soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex assembly-mediated GABA vesicle release and a consequent E/I imbalance. Importantly, optogenetic inhibition of CA3 GABAergic neurons prevented the effects of AAV-CMV-CAPON-125C-GFP on depressive behaviors in the presence of 5-HT2CR antagonist. Conclusively, our findings disclose the regulatory role of 5-HT2CR in depressive-like behaviors and highlight the hippocampal nNOS-CAPON coupling-triggered E/I imbalance as a pivotal cellular event underpinning the behavioral consequences of 5-HT2CR inhibition.

5.
Langmuir ; 40(21): 11160-11172, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38748754

RESUMO

The development of catalysts with high photon utilization efficiency is crucial for enhancing the catalytic performance of photocatalysts. Graphitic carbon nitride (g-C3N4) is a prominent material in the field of photocatalysis. However, it still exhibits drawbacks such as low utilization of visible light and severe recombination of photogenerated carriers. To address these issues, this study employs MoS2 nanotubes (NTs) as cocatalysts and constructs MoS2 NTs/g-C3N4. The MoS2 NTs/g-C3N4 exhibits a significant cavity enhancement effect through multiple light reflections. This results in a broad spectral absorption range and high photon utilization efficiency, while also reducing the recombination of photogenerated carriers. The photocatalyst demonstrates outstanding performance in both photocatalytic hydrogen production and photodegradation of organic pollutants. Specifically, the hydrogen production rate is 1921 µmol·g-1·h-1, which is approximately 2.4 times that of g-C3N4. Furthermore, the photodegradation rate of Rhodamine B reaches 98.6% within 30 min, which is approximately three times higher than that of g-C3N4. Free radical capture experiments confirm that holes (h+) are the primary active species in photodegradation. A plausible photocatalytic mechanism for the catalyst is proposed. This study provides valuable insights into the development of heterojunction photocatalysts with high photon utilization efficiency.

6.
ACS Appl Mater Interfaces ; 16(22): 29003-29015, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38788155

RESUMO

Navigating more effective methods to enhance the photon utilization of photodetectors poses a significant challenge. This study initially investigates the impact of morphological alterations in 2H-MoS2 on photodetector (PD) performance. The results reveal that compared to layered MoS2 (MoS2 NLs), MoS2 nanotubes (MoS2 NTs) impart a cavity enhancement effect through multiple light reflections. This structural feature significantly enhances the photodetection performance of the MoS2-based PDs. We further employ the heterojunction strategy to construct Y-TiOPc NPs:MoS2 NTs, utilizing Y-TiOPc NPs (Y-type titanylphthalocyanine) as the vis-NIR photosensitizer and MoS2 NTs as the photon absorption enhancer. This approach not only addresses the weak absorption of MoS2 NTs in the near-infrared region but also enhances carrier generation, separation, and transport efficiency. Additionally, the band bending phenomenon induced by trapped-electrons at the interface between ITO and the photoactive layer significantly enhances the hole tunneling injection capability from the external circuit. By leveraging the synergistic effects of the aforementioned strategies, the PD based on Y-TiOPc NPs:MoS2 NTs (Y:MT-PD) exhibits superior photodetection performance in the wavelength range of 365-940 nm compared to MoS2 NLs-based PD and MoS2 NTs-based PD. Particularly noteworthy are the peak values of key metrics for Y:MT-PD, such as EQE, R, and D* that are 4947.6%, 20588 mA/W, and 1.94 × 1012 Jones, respectively. The multiperiod time-resolved photocurrent response curves of Y:MT-PD also surpass those of the other two PDs, displaying rapid, stable, and reproducible responses across all wavelengths. This study provides valuable insights for the further development of photoactive materials with a high photon utilization efficiency.

7.
Front Mol Biosci ; 11: 1366113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560520

RESUMO

Kinesin motors are a large family of molecular motors that walk along microtubules to fulfill many roles in intracellular transport, microtubule organization, and chromosome alignment. Kinesin-7 CENP-E (Centromere protein E) is a chromosome scaffold-associated protein that is located in the corona layer of centromeres, which participates in kinetochore-microtubule attachment, chromosome alignment, and spindle assembly checkpoint. Over the past 3 decades, CENP-E has attracted great interest as a promising new mitotic target for cancer therapy and drug development. In this review, we describe expression patterns of CENP-E in multiple tumors and highlight the functions of CENP-E in cancer cell proliferation. We summarize recent advances in structural domains, roles, and functions of CENP-E in cell division. Notably, we describe the dual functions of CENP-E in inhibiting and promoting tumorigenesis. We summarize the mechanisms by which CENP-E affects tumorigenesis through chromosome instability and spindle assembly checkpoints. Finally, we overview and summarize the CENP-E-specific inhibitors, mechanisms of drug resistances and their applications.

8.
Front Immunol ; 15: 1376544, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638440

RESUMO

Background: Sarcopenia, common in the elderly, often linked to chronic diseases, correlates with inflammation.The association between SII and mortality in sarcopenia patients is underexplored, this study investigates this relationship in a U.S. adult cohort. Methods: We analyzed 1999-2018 NHANES data, focusing on 2,974 adults with sarcopenia. Mortality outcomes were determined by linking to National Death Index (NDI) records up to December 31, 2019. Using a weighted sampling design, participants were grouped into three groups by the Systemic Immune-Inflammation Index (SII). We used Cox regression models, adjusting for demographic and clinical variables, to explore SII's association with all-cause and cause-specific mortality in sarcopenia, performing sensitivity analyses for robustness. Results: Over a median follow-up of 9.2 years, 829 deaths occurred. Kaplan-Meier analysis showed significant survival differences across SII groups. The highest SII group showed higher hazard ratios (HRs) for all-cause and cause-specific mortality in both crude and adjusted models. The highest SII group had a higher HR for all-cause(1.57, 1.25-1.98), cardiovascular(1.61, 1.00-2.58), cancer(2.13, 1.32-3.44), and respiratory disease mortality(3.21, 1.66-6.19) in fully adjusted models. Subgroup analyses revealed SII's association with all-cause mortality across various demographics, including age, gender, and presence of diabetes or cardiovascular disease. Sensitivity analyses, excluding participants with cardiovascular diseases, those who died within two years of follow-up, or those under 45 years of age, largely reflected these results, with the highest SII group consistently demonstrating higher HRs for all types of mortality in both unadjusted and adjusted models. Conclusion: Our study is the first to demonstrate a significant relationship between SII and increased mortality risks in a sarcopenia population.


Assuntos
Doenças Cardiovasculares , Sarcopenia , Adulto , Idoso , Humanos , Causas de Morte , Inquéritos Nutricionais , Inflamação
9.
Photodiagnosis Photodyn Ther ; 47: 104103, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677500

RESUMO

BACKGROUND: This study used optical coherence tomography (OCT) to observe real-time internal gap formation in both bulk-fill and conventional resin composites. It aimed to provide a quantitative analysis of variations, addressing the inconclusive nature of microleakage assessment caused by differences in testing methods. METHODS: Fifty extracted third molars prepared with Class I cavities, were divided into five groups (n = 10). Conventional resin Filtek Z350 XT (FZX) was applied with a double-layer filling of 2 mm per layer. Bulk-fill resins X-tra fil (XTF), Filtek Bulk Fill Posterior Restorative (FBP), Surefil SDR Flow + (SDR), and Filtek Flowable Restorative (FFR) were applied with a single-layer filling of 4 mm. Real-time OCT imaging was conducted during light curing. Post-curing, the entire sample was OCT-scanned. Following this, ImageJ software was used to measure the gap (G1 %). Subsequently, thermal cycling (TC) (5000 times, 5 °C-55 °C) was applied, followed by OCT scanning to calculate the gap (G2 %) and ΔG%. Data were analyzed using two-way repeated measures ANOVA, Kruskal-Wallis test, and Duncan's test (α=0.05). RESULTS: There was no significant difference in G1 % among the groups (p > 0.05). Following TC, FZX exhibited the highest G2 %, succeeded by FFR, FBP, XTF, and SDR, with SDR demonstrating the lowest G2 % (p < 0.05). FZX showed the highest ΔG% (p < 0.05), while SDR exhibited the lowest ΔG% (p < 0.05). CONCLUSION: OCT proves to be a promising tool for detecting microleakage. TC exerted a more significant negative impact on conventional resin. Surefil SDR Flow + displayed the least microleakage, both before and after TC.


Assuntos
Resinas Compostas , Tomografia de Coerência Óptica , Resinas Compostas/química , Tomografia de Coerência Óptica/métodos , Humanos , Teste de Materiais , Dente Serotino/diagnóstico por imagem , Metacrilatos
10.
Genomics ; 116(3): 110838, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38537807

RESUMO

After epiphyseal fracture, the epiphyseal plate is prone to ischemia and hypoxia, leading to the formation of bone bridge and deformity. However, the exact mechanism controlling the bone bridge formation remains unclear. Notch/RBPJ signaling axis has been indicated to regulate angiogenesis and osteogenic differentiation. Our study aims to investigate the mechanism of bone bridge formation after epiphyseal plate injury, and to provide a theoretical basis for new therapeutic approaches to prevent the bone bridge formation. The expression of DLL4 and RBPJ was significantly up-regulated in HUVECs after ischemia and hypoxia treatment. Notch/RBPJ pathway positively regulated the osteogenic differentiation of BMSCs. HUVECs can induce osteogenic differentiation of BMSCs under ischemia and hypoxia. Notch/RBPJ pathway is involved in the regulation of the trans-epiphyseal bridge formation. Notch/RBPJ in HUVECs is associated with osteogenic differentiation of BMSCs and may participate in the regulation of the bone bridge formation across the epiphyseal plate.


Assuntos
Diferenciação Celular , Células Endoteliais da Veia Umbilical Humana , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina , Neovascularização Fisiológica , Osteogênese , Receptores Notch , Transdução de Sinais , Humanos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Receptores Notch/metabolismo , Receptores Notch/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Hipóxia Celular , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Células Cultivadas , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Angiogênese
11.
Poult Sci ; 103(3): 103451, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301497

RESUMO

The present study investigated the effects of replacing part of the basal diet with 2-stage fermented feed (FF) (soybean hulls:rapeseed cake (2:1, m/m)) on the growth performance, immunity, antioxidant capacity, and intestinal health of Chahua chicken. A total of 160 Chahua chickens were randomly divided into 4 groups to receive a control diet or diet with 5%, 10%, or 15% of the basal diet replaced by FF, respectively for 56 d. The results showed that FF significantly improved the average daily gain (ADG) and average daily feed intake (ADFI) of Chahua chickens (P < 0.05). Furthermore, the serum immunoglobulin (Ig) A, glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD) in Chahua chicken receiving the diet added with 15% FF significantly increased (P < 0.05). Chahua chicken in both the 10% and 15% groups showed increased serum IgG and IgM and decreased malondialdehyde. Serum interleukin-2 and interferon-gamma significantly increased in all FF groups. Compared with the CON group, higher ileal villus height (VH) was found in the 10% FF group. Treatment with FF significantly increased the ileal villus height/crypt depth (VH/CD) ratio, jejunal VH, and jejunal VH/CD ratio while reducing ileal and jejunal CD. The modified gut microbiota composition was observed in the Chahua chicken fed a diet containing FF, in particular, with the increased abundance of Faecalibacterium and Lactobacillus. The abundance of Lactobacillus significantly increased in the 10% and 15% FF groups (all P < 0.05). Correlation analysis revealed a positive correlation between Lactobacillus and VH (R = 0.38, P = 0.10, Figure 3B), AH/CD ratio (R = 0.63, P = 0.003), and a negative correlation with CD (R = -0.72, P = 0.001). These results indicate that FF improves immunity, antioxidant capacity, and intestinal health and consequently enhances growth performance in Chahua chicken.


Assuntos
Brassica napus , Brassica rapa , Microbioma Gastrointestinal , Animais , Galinhas , Glycine max , Antioxidantes
12.
Front Med (Lausanne) ; 11: 1218232, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384421

RESUMO

Renal hypouricemia (RHUC) is a rare autosomal recessive disorder characterized by impaired renal tubular uric acid reabsorption and abnormally high uric acid clearance, which may be manifested by reduced serum uric acid (SUA) levels and elevated fractional excretion of uric acid (FE-UA >10%). Most RHUC patients are often asymptomatic or have accidentally decreased SUA levels during health examinations, while others develop kidney stones and exercise-induced acute kidney injury (EIAKI). We now report a case of RHUC complicated with an asymptomatic kidney stone, and we identified a heterozygous mutation of c.269G > A (p.R90H) and a novel heterozygous mutation of c.674C > G (p.T225R) in the SLC22A12 gene in the patient through whole exon gene detection (NGS method). This case offers valuable insights into the mechanisms, clinical management, and prognosis of RHUC and its associated complications.

13.
RSC Adv ; 14(10): 6727-6737, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38405067

RESUMO

In this study, a SiO2 layer-coated g-C3N4 catalyst was prepared by a sol-gel method to overcome the poor adsorption ability and high recombination rate of charge carriers of pristine g-C3N4. SEM and TEM images indicated that SiO2 nanoparticles were coated on the surface of g-C3N4 nanoparticles with a layered structure and the layers were tightly contacted with g-C3N4. XRD patterns, FTIR spectra, UV-vis spectra and XPS spectra revealed that the structure of g-C3N4 was not destroyed and its photoelectric catalytic properties were not suppressed by the coating of SiO2 layers. Adsorption experiments revealed that the SiO2 layers improved the adsorption performance of g-C3N4 and their ratios were adjusted. The molecular weights of the final products of the degradation of RhB and antibiotics were at the micro-molecule level while the amount of g-C3N4 reached 1.2% of the mass fraction, which were more suitable for pollutant degradation compared with those of g-C3N4 due to its poor adsorption ability. The reason for this was likely that the SiO2 layers were not only beneficial for the adsorption of pollutants and intermediate products but also for prolonging the life time of the separated electrons and holes. Finally, active trapping experiments confirmed that both the holes and superoxide radicals were the main factors in the degradation of RhB and antibiotics, with the superoxides being the most active species.

14.
Brain Res Bull ; 208: 110884, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253132

RESUMO

BACKGROUND: Rab3a regulates vesicle secretion and transport. Emerging evidences have shown that extracellular vesicles (EVs) can reach target lesions of injured spinal cords and exert a positive effect on these lesions. However, the molecular mechanism by which Rab3a regulates vesicle secretion to ameliorate spinal cord injury (SCI) is not fully understood. METHODS: An SCI rat model was established which was used to examine the pathological changes and Rab3a expression in spinal cord tissue. Rab3a was overexpressed in the model rats to demonstrate its effect on SCI repair. Rab3a was also knocked down in neuronal cells to verify its role in vesicle secretion and neuronal cells. The binding protein of Rab3a was identified by Co-IP and mass spectrometry. RESULTS: Rab3a was significantly downregulated in SCI rats and Rab3a overexpression promoted SCI repair. Rab3a knockdown inhibited the secretion of neuronal cell-derived EVs. Compared to the EVs from the equal number of control neuronal cells, EVs from Rab3a-knockdown neuronal cells promoted M1 macrophage polarization, which in turn, promoted neuronal cell apoptosis. Mechanistically, STXBP1 was identified as a binding protein of Rab3a, and their interaction promoted the secretion of neuronal cell-derived EVs. Furthermore, METTL2b was significantly downregulated in SCI rats, and METTL2b knockdown significantly reduced Rab3a protein expression. CONCLUSION: These results suggest that Rab3a promotes the secretion of neuronal cell-derived EVs by interacting with its binding protein STXBP1. Neuronal cells-derived EVs inhibited the polarization of M1 macrophages in the spinal cord microenvironment, thereby promoting SCI repair. Our findings provide a theoretical basis for the clinical treatment of SCI.


Assuntos
Traumatismos da Medula Espinal , Animais , Ratos , Macrófagos/metabolismo , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo
15.
Inorg Chem ; 62(51): 21290-21298, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38085535

RESUMO

Single-atom metal-anchored porphyrin-based metal-organic frameworks (MOFs) have shown excellent light absorption, catalytic sites, and high stability during photocatalytic reactions, while there are still challenges for facile assembly with quantum dots to enhance catalytic dynamics. Herein, a kind of Fe single atom-doped MOF material (Fe-MOF-525) was ball milled with CdS in a proper ratio through Fe-N4 and Fe-N-C bonding, which showed the enhanced photoinduced carrier separation ability. As a result, extended light absorption ranges of CdS/Fe-MOF-5252.3 induced the promotion of the photocatalytic hydrogen (H2) value (3638.6 µmol g-1 h-1), which was 7.2 and 2.3 times higher than those of Fe-MOF-525 and CdS. In this work, the facile synthetic technique, specific active sites, and enhanced catalytic dynamics in the composite highlight the future research on MOF-based heterojunctions and their potential photocatalysis applications..

16.
Org Lett ; 25(46): 8205-8209, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37947432

RESUMO

The electrochemical synthesis of 5-aminocoumaran derivatives from easily oxidizable aminophenols and readily available olefins is described. The reaction efficiently produces 5-aminocoumarans in high yield under mild and environmentally friendly conditions without the necessity of catalysts, additives, oxidizing agents, or sacrificial reagents. Hydrogen as the sole byproduct of the reaction makes the method clean, highly atom-efficient, and step-economical.

17.
EMBO Rep ; 24(11): e56614, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37789674

RESUMO

ATPase family AAA domain-containing protein 1 (ATAD1) maintains mitochondrial homeostasis by removing mislocalized tail-anchored (TA) proteins from the mitochondrial outer membrane (MOM). Hepatitis C virus (HCV) infection induces mitochondrial fragmentation, and viral NS5B protein is a TA protein. Here, we investigate whether ATAD1 plays a role in regulating HCV infection. We find that HCV infection has no effect on ATAD1 expression, but knockout of ATAD1 significantly enhances HCV infection; this enhancement is suppressed by ATAD1 complementation. NS5B partially localizes to mitochondria, dependent on its transmembrane domain (TMD), and induces mitochondrial fragmentation, which is further enhanced by ATAD1 knockout. ATAD1 interacts with NS5B, dependent on its three internal domains (TMD, pore-loop 1, and pore-loop 2), and induces the proteasomal degradation of NS5B. In addition, we provide evidence that ATAD1 augments the antiviral function of MAVS upon HCV infection. Taken together, we show that the mitochondrial quality control exerted by ATAD1 can be extended to a novel antiviral function through the extraction of the viral TA-protein NS5B from the mitochondrial outer membrane.


Assuntos
Hepacivirus , Hepatite C , Humanos , Hepacivirus/metabolismo , Proteínas Virais/metabolismo , Hepatite C/metabolismo , Mitocôndrias/metabolismo , Antivirais , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
18.
J Environ Manage ; 345: 118890, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37659374

RESUMO

Mineral-associated organic carbon (MOC) is a stable component of the soil carbon (C) pool, critical to realize carbon sequestration and coping with climate change. Many Moso bamboo (Phyllostachys edulis) forests in subtropical and tropical areas that used to be intensively managed have been left unmanaged. Still, studies on MOC changes occurring during the transition from intensive management to unmanagement are lacking. Besides, the understanding of the role of microorganisms in MOC accumulation is far from satisfactory. Based on the combination of field investigation and laboratory analysis of 40 Moso bamboo forest sampling plots with different unmanaged chronosequence's in southeast China, we observed the MOC content in Moso bamboo forests left unmanaged for 2-5 years had decreased, whereas that in forests left unmanaged for 11-14 years had increased compared with that in intensively managed forests. Specifically, the MOC contents in forests left unmanaged for 11-14 years were significantly higher than in those under intensive management or unmanaged for 2-5 years. Moreover, we found that microorganisms drove MOC change through two different pathways: (i) more microorganisms led to more soil nutrients, which led to more amino sugars, ultimately resulting in the accumulation of MOC, and (ii) microorganisms promoted the accumulation of MOC by influencing the content of metal oxides (poorly crystalline aluminum oxides and free aluminum oxides). We believe that ignoring the interaction between microorganisms and metal oxides may lead to uncertainty in evaluating the relative contribution of microbial residues to MOC.


Assuntos
Alumínio , Carbono , Solo , China , Florestas , Óxidos , Poaceae
19.
Ecotoxicol Environ Saf ; 265: 115523, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37776822

RESUMO

Butylparaben (BuP) is a common antibacterial preservative utilized extensively in food, medical supplies, cosmetics, and personal care products. The current study reports the use of Zebrafish (Danio rerio) embryos to investigate potential developmental toxicity caused by exposure to BuP. The development of Neural crest cells (NCCs) is highly active during gastrulation in Zebrafish embryos. Thus, we utilized 0.5 mg/L, 0.75 mg/L, and 1 mg/L BuP solutions, respectively, in accordance with the international safety standard dosage. We observed severe craniofacial cartilage deformities, periocular edema, cardiac dysplasia, and delayed otolith development in the Zebrafish larvae 5 days after exposure. The oxidative stress response was significantly enhanced. In addition, the biochemical analysis revealed that the activities of catalase (CAT) and superoxide dismutase (SOD) were significantly reduced relative to the control group, whereas the concentration of malondialdehyde (MDA) was significantly elevated. Furthermore, ALP activity, a marker of osteoblast activity, was also reduced. Moreover, the RT-qPCR results indicated that the expression of chondrocyte marker genes sox9a, sox9b, and col2a1a was down-regulated. In addition, the morphology of maxillofacial chondrocytes was altered in Zebrafish larvae, and the proliferation of cranial NCCs was inhibited. Accordingly, our findings indicate that strong oxidative stress induced by BuP inhibits the proliferation of NCCs in larval Zebrafish, leading to craniofacial deformities.

20.
J Am Chem Soc ; 145(35): 19283-19292, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37585603

RESUMO

Precise tailoring of the aggregation state of covalent organic frameworks (COFs) to form a hierarchical porous structure is critical to their performance and applications. Here, we report a one-pot and one-step strategy of using dynamic combinatorial chemistry to construct imine-based hollow COFs containing meso- and macropores. It relies on a direct copolymerization of three or more monomers in the presence of two monofunctional competitors. The resulting particle products possess high crystallinity and hierarchical pores, including micropores around 0.93 nm, mesopores widely distributed in the range of 3.1-32 nm, and macropores at about 500 nm, while the specific surface area could be up to 748 m2·g-1, with non-micropores accounting for 60% of the specific surface area. The particles demonstrate unique advantages in the application as nanocarriers for in situ loading of Pd catalysts at 93.8% loading efficiency in the copolymerization of ethylene and carbon monoxide. The growth and assembly of the copolymer could thus be regulated to form flower-shaped particles, efficiently suppressing the fouling of the reactor. The copolymer's weight-average molecular weight and the melting temperature are also highly improved. Our method provides a facile way of fabricating COFs with hierarchical pores for advanced applications in catalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...