Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 673: 9-18, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38870666

RESUMO

Hydrogen peroxide (H2O2) emerges as a viable oxidant for fuel cells, necessitating the development of an efficient and cost-effective electrocatalyst for the hydrogen peroxide reduction reaction (HPRR). In this study, we synthesized a self-supporting, highly active HPRR electrocatalyst comprising two morphologically distinct components: CeO2-NiCo2O4 nanowires and CeO2-NiCo2O4 metal organic framework derivatives, via a two-step hydrothermal process followed by air calcination. X-ray diffraction and transmission electron microscopy analysis confirmed the presence of CeO2 and NiCo2O4, revealing the amalgamated interface between them. CeO2 exhibits multifunctionality in regulating the surface electronic configuration of NiCo2O4, fostering synergistic connections, and introducing oxygen deficiencies to enhance the catalytic efficacy in HPRR. Electrochemical measurements demonstrate a reduction current density of 789.9 mA·cm-2 at -0.8 V vs. Ag/AgCl. The assembly of direct borohydride-hydrogen peroxide fuel cell (DBHPFC) exhibits a peak power density of 45.2 mW·cm-2, demonstrating durable stability over a continuous operation period of 120 h. This investigation providing evidence that the fabrication of heterostructured catalysts based on CeO2 for HPRR is a viable approach for the development of high-efficiency electrocatalysts in fuel cell technology.

2.
Int J Biol Macromol ; 273(Pt 1): 132924, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38866282

RESUMO

The continuous stimulation of periodontitis leads to a decrease in the number of stem cells within the lesion area and significantly impairing their regenerative capacity. Therefore, it is crucial to promote stem cell homing and regulate the local immune microenvironment to suppress inflammation for the regeneration of periodontitis-related tissue defects. Here, we fabricated a novel multifunctional bilayer nanofibrous membrane using electrospinning technology. The dense poly(caprolactone) (PCL) nanofibers served as the barrier layer to resist epithelial invasion, while the polyvinyl alcohol/chitooligosaccharides (PVA/COS) composite nanofiber membrane loaded with calcium beta-hydroxy-beta-methylbutyrate (HMB-Ca) acted as the functional layer. Material characterization tests revealed that the bilayer nanofibrous membrane presented desirable mechanical strength, stability, and excellent cytocompatibility. In vitro, PCL@PVA/COS/HMB-Ca (P@PCH) can not only directly promote rBMSCs migration and differentiation, but also induce macrophage toward pro-healing (M2) phenotype-polarization with increasing the secretion of anti-inflammatory and pro-healing cytokines, thus providing a favorable osteoimmune environment for stem cells recruitment and osteogenic differentiation. In vivo, the P@PCH membrane effectively recruited host MSCs to the defect area, alleviated inflammatory infiltration, and accelerated bone defects repair. Collectively, our data indicated that the P@PCH nanocomposite membrane might be a promising biomaterial candidate for guided tissue regeneration in periodontal applications.

3.
Environ Res ; 258: 119452, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38909947

RESUMO

Soil contamination, particularly from pesticide residues, presents a significant challenge to the sustainable development of agricultural ecosystems. Identifying the key factors influencing soil pesticide residue risk and implementing effective measures to mitigate their risks at the source are essential. Here, we collected soil samples and conducted a comprehensive survey among local farmers in the Three Gorges Reserve Area, a major agricultural production region in Southwest China. Subsequently, employing a dual analytical approach combining structural equation modeling (SEM) and random forest modeling (RFM), we examined the effects of various factors on pesticide residue accumulation in vegetable ecosystems. Our SEM analysis revealed that soil characteristics (path coefficient 0.85) and cultivation factor (path coefficient 0.84) had the most significant effect on pesticide residue risk, while the farmer factors indirectly influenced pesticide residues by impacting both cultivation factors and soil characteristics. Further exploration using RFM identified the three most influential factors contributing to pesticide residue risk as cation exchange capacity (CEC) (account for 18.84%), cultivation area (account for 14.12%), and clay content (account for 13.01%). Based on these findings, we carried out experimental trials utilizing Integrated Pest Management (IPM) technology, resulting in a significant reduction in soil pesticide residues and notable improvements in crop yields. Therefore, it is recommended that governmental efforts should prioritize enhanced training for vegetable farmers, promotion of eco-friendly plant protection methods, and regulation of agricultural environments to ensure sustainable development.

4.
Foodborne Pathog Dis ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695190

RESUMO

Trans-cinnamaldehyde (TC), a typical plant-derived compound, has been widely used in the control of foodborne pathogen contamination. Nevertheless, the risk associated with the occurrence of viable but nonculturable (VBNC) bacteria induced by TC remains unclear. The results of this study showed that Salmonella Enteritidis (S. Enteritidis) entered the VBNC state after being induced by TC at a minimum inhibitory concentration of 312.5 µg/mL and survived for at least 22 days under TC treatment. Enhanced resistance was found against heat treatment (75°C, 30 s), antibiotics (i.e., ampicillin, ceftriaxone sodium, chloramphenicol), and hydrogen peroxide (3%) in VBNC S. Enteritidis. A synergistic effect against VBNC S. Enteritidis occurred when TC was combined with acid treatment, including lactic acid and acetic acid (pH = 3.5). VBNC and resuscitated S. Enteritidis by sodium pyruvate treatment (100 mM) were found to retain the infectious ability to Caco-2 cells. Relative expression levels of the stress-related genes relA, spoT, ppx, lon, katG, sodA, dnaK, and grpE were upregulated in VBNC S. Enteritidis. Accumulation of reactive oxygen species (ROS) and protein aggregates was observed in VBNC cells. Besides, the resuscitation of VBNC cells was accompanied with clearance of ROS and protein aggregates. In summary, this study presents a comprehensive characterization of stress tolerance and resuscitation of VBNC S. Enteritidis induced by cinnamaldehyde, and the results provide useful information for the development of effective control strategy against VBNC pathogenic bacteria in food production.

5.
Pest Manag Sci ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816914

RESUMO

BACKGROUND: Fludioxonil is a fungicide used to control gray mold. However, the frequency of resistance in the field is low, and highly resistant strains are rarely isolated. The biological fitness of the resistant strain is lower than that of the wild strain. Therefore, the molecular mechanism underlying the decrease in the fitness of the fludioxonil-resistant strain of Botrytis cinerea was explored to provide a theoretical basis for resistance monitoring and management. RESULTS: Transcriptome analysis was performed on five different-point mutant resistant strains of fludioxonil, focusing on mining and screening candidate genes that lead to reduced fitness of the resistant strains and the functional verification of these genes. The differentially expressed genes (DEGs) of the five point-mutation resistant strains intersected with 1869 DEGs. Enrichment analysis showed that three downregulated genes (Bcin05g07030, Bcgad1, and Bcin03g05840) were enriched in multiple metabolic pathways and were downregulated in both domesticated strains. Bcin05g07030 and Bcin03g05840 were involved in mycelial growth and development, pathogenicity, and conidial yield, and negatively regulated oxidative stress and cell wall synthesis. Bcgad1 was involved in mycelial growth and development, conidial yield, oxidative stress, and cell wall synthesis. Furthermore, Bcin05g07030 was involved in osmotic stress and spore germination, whereas Bcin03g05840 and Bcgad1 negatively regulated osmotic stress and cell wall integrity. CONCLUSION: These results enable us to further understand the molecular mechanism underlying the decrease in the biological fitness of B. cinerea fludioxonil-resistant strains. © 2024 Society of Chemical Industry.

6.
Sci Adv ; 10(18): eadn9731, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38691594

RESUMO

Hydropower, although an attractive renewable energy source, can alter the flux of water, sediments, and biota, producing detrimental impacts in downstream regions. The Mekong River illustrates the impacts of large dams and the limitations of conventional dam regulating strategies. Even under the most optimistic sluicing scenario, sediment load at the Mekong Delta could only recover to 62.3 ± 8.2 million tonnes (1 million tonnes = 109 kilograms), short of the (100 to 160)-million tonne historical level. Furthermore, unless retrofit to reroute sediments, the dams are doomed to continue trapping sediment for at least 170 years and thus starve downstream reaches of sediment, contributing to the impending disappearance of the Mekong Delta. Therefore, we explicitly challenge the widespread use of large dead storages-the portion of the reservoirs that cannot be emptied-in dam designs. Smaller dead storages can ease sediment starvation in downstream regions, thereby buffering against sinking deltas or relative sea level rises.

7.
Brain Sci ; 14(4)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38672030

RESUMO

To determine the critical timing for learning and the associated synaptic plasticity, we analyzed developmental changes in learning together with training-induced plasticity. Rats were subjected to an inhibitory avoidance (IA) task prior to weaning. While IA training did not alter latency at postnatal day (PN) 16, there was a significant increase in latency from PN 17, indicating a critical day for IA learning between PN 16 and 17. One hour after training, acute hippocampal slices were prepared for whole-cell patch clamp analysis following the retrieval test. In the presence of tetrodotoxin (0.5 µM), miniature excitatory postsynaptic currents (mEPSCs) and inhibitory postsynaptic currents (mIPSCs) were sequentially recorded from the same CA1 neuron. Although no changes in the amplitude of mEPSCs or mIPSCs were observed at PN 16 and 21, significant increases in both excitatory and inhibitory currents were observed at PN 23, suggesting a specific critical day for training-induced plasticity between PN 21 and 23. Training also increased the diversity of postsynaptic currents at PN 23 but not at PN 16 and 21, demonstrating a critical day for training-induced increase in the information entropy of CA1 neurons. Finally, we analyzed the plasticity at entorhinal cortex layer III (ECIII)-CA1 or CA3-CA1 synapses for each individual rat. At either ECIII-CA1 or CA3-CA1 synapses, a significant correlation between mean α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid/N-methyl-D-aspartic acid (AMPA/NMDA) ratio and learning outcomes emerged at PN 23 at both synapses, demonstrating a critical timing for the direct link between AMPA receptor-mediated synaptic plasticity and learning efficacy. Here, we identified multiple critical periods with respect to training-induced synaptic plasticity and delineated developmental trajectories of learning mechanisms at hippocampal CA1 synapses.

8.
Phytopathology ; 114(4): 770-779, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38598410

RESUMO

Gray mold caused by Botrytis cinerea is among the 10 most serious fungal diseases worldwide. Fludioxonil is widely used to prevent and control gray mold due to its low toxicity and high efficiency; however, resistance caused by long-term use has become increasingly prominent. Therefore, exploring the resistance mechanism of fungicides provides a theoretical basis for delaying the occurrence of diseases and controlling gray mold. In this study, fludioxonil-resistant strains were obtained through indoor drug domestication, and the mutation sites were determined by sequencing. Strains obtained by site-directed mutagenesis were subjected to biological analysis, and the binding modes of fludioxonil and iprodione to Botrytis cinerea Bos1 BcBos1 were predicted by molecular docking. The results showed that F127S, I365S/N, F127S + I365N, and I376M mutations on the Bos1 protein led to a decrease in the binding energy between the drug and BcBos1. The A1259T mutation did not lead to a decrease in the binding energy, which was not the cause of drug resistance. The biological fitness of the fludioxonil- and point mutation-resistant strains decreased, and their growth rate, sporulation rate, and pathogenicity decreased significantly. The glycerol content of the sensitive strains was significantly lower than that of the resistant strains and increased significantly after treatment with 0.1 µg/ml of fludioxonil, whereas that of the resistant strains decreased. The osmotic sensitivity of the resistant strains was significantly lower than that of the sensitive strains. Positive cross-resistance was observed between fludioxonil and iprodione. These results will help to understand the resistance mechanism of fludioxonil in Botrytis cinerea more deeply.


Assuntos
Aminoimidazol Carboxamida/análogos & derivados , Botrytis , Dioxóis , Farmacorresistência Fúngica , Proteínas Fúngicas , Fungicidas Industriais , Histidina Quinase , Hidantoínas , Pirróis , Botrytis/genética , Botrytis/efeitos dos fármacos , Botrytis/enzimologia , Dioxóis/farmacologia , Fungicidas Industriais/farmacologia , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hidantoínas/farmacologia , Pirróis/farmacologia , Pirróis/metabolismo , Histidina Quinase/genética , Histidina Quinase/metabolismo , Doenças das Plantas/microbiologia , Simulação de Acoplamento Molecular , Mutação , Mutagênese Sítio-Dirigida
9.
J Fungi (Basel) ; 10(2)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38392781

RESUMO

Citrus target spot, caused by Pseudofabraea citricarpa, was formerly considered a cold-tolerant fungal disease. However, it has now spread from high-latitude regions to warmer low-latitude regions. Here, we conducted physiological observations on two different strains of the fungus collected from distinct regions, and evaluated their pathogenicity. Interestingly, the CQWZ collected from a low-latitude orchard, exhibited higher temperature tolerance and pathogenicity when compared to the SXCG collected from a high-latitude orchard. To further understand the evolution of temperature tolerance and virulence in these pathogens during the spread process, as well as the mechanisms underlying these differences, we performed genomic comparative analysis. The genome size of CQWZ was determined to be 44,004,669 bp, while the genome size of SXCG was determined to be 45,377,339 bp. Through genomic collinearity analysis, we identified two breakpoints and rearrangements during the evolutionary process of these two strains. Moreover, gene annotation results revealed that the CQWZ possessed 376 annotated genes in the "Xenobiotics biodegradation and metabolism" pathway, which is 79 genes more than the SXCG. The main factor contributing to this difference was the presence of salicylate hydroxylase. We also observed variations in the oxidative stress pathways and core pathogenic genes. The CQWZ exhibited the presence of a heat shock protein (HSP SSB), a catalase (CAT2), and 13 core pathogenic genes, including a LysM effector, in comparison to the SXCG. Furthermore, there were significant disparities in the gene clusters responsible for the production of seven metabolites, such as Fumonisin and Brefeldin. Finally, we identified the regulatory relationship, with the HOG pathway at its core, that potentially contributes to the differences in thermotolerance and virulence. As the global climate continues to warm, crop pathogens are increasingly expanding to new territories. Our findings will enhance understanding of the evolution mechanisms of pathogens under climate change.

10.
Plant Biotechnol J ; 22(7): 1929-1941, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38366355

RESUMO

Plants have evolved a sophisticated immunity system for specific detection of pathogens and rapid induction of measured defences. Over- or constitutive activation of defences would negatively affect plant growth and development. Hence, the plant immune system is under tight positive and negative regulation. MAP kinase phosphatase1 (MKP1) has been identified as a negative regulator of plant immunity in model plant Arabidopsis. However, the molecular mechanisms by which MKP1 regulates immune signalling in wheat (Triticum aestivum) are poorly understood. In this study, we investigated the role of TaMKP1 in wheat defence against two devastating fungal pathogens and determined its subcellular localization. We demonstrated that knock-down of TaMKP1 by CRISPR/Cas9 in wheat resulted in enhanced resistance to rust caused by Puccinia striiformis f. sp. tritici (Pst) and powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt), indicating that TaMKP1 negatively regulates disease resistance in wheat. Unexpectedly, while Tamkp1 mutant plants showed increased resistance to the two tested fungal pathogens they also had higher yield compared with wild-type control plants without infection. Our results suggested that TaMKP1 interacts directly with dephosphorylated and activated TaMPK3/4/6, and TaMPK4 interacts directly with TaPAL. Taken together, we demonstrated TaMKP1 exert negative modulating roles in the activation of TaMPK3/4/6, which are required for MAPK-mediated defence signalling. This facilitates our understanding of the important roles of MAP kinase phosphatases and MAPK cascades in plant immunity and production, and provides germplasm resources for breeding for high resistance and high yield.


Assuntos
Sistemas CRISPR-Cas , Resistência à Doença , Doenças das Plantas , Imunidade Vegetal , Triticum , Triticum/genética , Triticum/microbiologia , Triticum/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Imunidade Vegetal/genética , Resistência à Doença/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ascomicetos/fisiologia , Mutagênese , Fosfatase 1 de Especificidade Dupla/genética , Fosfatase 1 de Especificidade Dupla/metabolismo , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Puccinia/fisiologia , Plantas Geneticamente Modificadas
11.
Microbiol Res ; 280: 127591, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38181481

RESUMO

Listeria monocytogenes is a ubiquitous foodborne pathogen causing human and animal listeriosis with high mortality. Neurological and maternal-neonatal listeriosis outbreaks in Europe and the United States were frequently associated with clonal complexes CC1, CC2 and CC6 harboring Listeria Pathogenicity Island-1 (LIPI-1), as well as CC4 carrying both LIPI-1 and LIPI-4. However, human listeriosis in China was predominantly linked to CC87 and CC619 from serotype 1/2b. To understand the genetic evolution and distribution patterns of CC619, we characterized the epidemic history, population structure, and transmission feature of CC619 strains through analysis of 49,421 L. monocytogenes genomes globally. We found that CC619 was uniquely distributed in China, and closely related with perinatal infection. As CC619 strains were being mainly isolated from livestock and poultry products, we hypothesized that pigs and live chicken were the reservoirs of CC619. Importantly, all CC619 strains not only harbored the intact LIPI-1 and LIPI-4, but these also carried LIPI-3 that could facilitate host colonization and invasion. The deficiency of LIPI-3 or LIPI-4 markedly decreased L. monocytogenes colonization capacity in a model of intragastric infection in the mouse. Altogether, our findings suggest that the hypervirulent CC619 harboring three pathogenicity islands LIPI-1, LIPI-3 and LIPI-4 is a putatively persistent population in various foods, environment, and human population, warranting the further research for deciphering its pathogenicity and strengthening epidemiological surveillance.


Assuntos
Listeria monocytogenes , Listeriose , Humanos , Recém-Nascido , Estados Unidos , Animais , Camundongos , Suínos , Listeria monocytogenes/genética , Virulência/genética , Listeriose/epidemiologia , Fatores de Virulência/genética , Genômica , Microbiologia de Alimentos
12.
Int J Food Microbiol ; 410: 110463, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38039925

RESUMO

Involvement of the transcriptional regulator RpoS in the persistence of viable but non-culturable (VBNC) state has been demonstrated in several species of bacteria. This study investigated the role of the RpoS in the formation and resuscitation of VBNC state in Salmonella enterica serovar Enteritidis CICC 21482 by measuring bacterial survival, morphology, physiological characteristics, and gene expression in wild-type (WT) and rpoS-deletion (ΔrpoS) strains during long-term storage in powdered infant formula (PIF). The ΔrpoS strain was produced by allelic exchange using a suicide plasmid. Bacteria were inoculated into PIF for 635-day storage. Survival, morphology, intracellular reactive oxygen species (ROS) levels and intercellular quorum sensing autoinducer-2 (AI-2) contents were regularly measured. Resuscitation assays were conducted after obtaining VBNC cells. Gene expression was measured using real-time quantitative polymerase chain reaction (qPCR). The results showed that RpoS and low temperature conditions were associated with enhanced culturability and recoverability of Salmonella Enteritidis after desiccation storage in low water activity (aw) PIF. In addition, the synthesis of intracellular ROS and intercellular quorum sensing AI-2 was regulated by RpoS, inducing the formation and resuscitation of VBNC cells. Gene expression of soxS, katG and relA was found strongly associated with RpoS. Due to the lack of RpoS factor, the ΔrpoS strain could not normally synthesize SoxS, catalase and (p)ppGpp, resulting in its early shift to the VBNC state. This study elucidates the role of rpoS in desiccation stress and the formation and resuscitation mechanism of VBNC cells under desiccation stress. It serves as the basis for preventing and controlling the recovery of pathogenic bacteria in VBNC state in low aw foods.


Assuntos
Fórmulas Infantis , Salmonella enteritidis , Humanos , Salmonella enteritidis/genética , Pós , Espécies Reativas de Oxigênio , Expressão Gênica
13.
Foodborne Pathog Dis ; 21(2): 119-126, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38010814

RESUMO

Desiccation stress could induce crossprotection and even affect virulence of Salmonella enterica. However, the influence of food matrices with low-water activity on desiccation adaptation of Salmonella still remains unclear. This study investigated the survival and adaptation of Salmonella Enteritidis in skim milk powder, ginger powder, and chocolate powder under desiccation storage conditions for a total of 12 weeks. High survival rates of Salmonella Enteritidis in all food matrices maintained over the long-term desiccation storage. Desiccation-adapted Salmonella Enteritidis enhanced heat resistance (p < 0.05) with the increase of storage time. Food composition plays an important role in the induction of crossresistance of desiccation-adapted Salmonella. After desiccation storage, Salmonella Enteritidis in ginger powder was most tolerant to heat treatment. Salmonella Enteritidis in skim milk powder was most resistant to the gastrointestinal simulation environment, and had strongest adhesion to Caco-2 cells. The effects of food composition on gene expression (rpoS, proV, otsA, otsB, grpE, dnaK, rpoH, and sigDE) in desiccation-adapted Salmonella Enteritidis were not significant (p > 0.05). At initial desiccation storage, osmotic protection-related genes (fadA, proV, otsA, and otsB), stress response regulator (rpoS), and heat-resistance-related genes (grpE, dnaK, and rpoH) were all significantly upregulated (p < 0.05). However, after 4-week storage, the expression level of desiccation-related genes, proV, otsA, otsB, grpE, dnaK, and rpoH, significantly decreased (p < 0.05). This study enables a better understanding of Salmonella's responses to long-term desiccation stress in different kinds of low-water activity foods.


Assuntos
Temperatura Alta , Salmonella enteritidis , Humanos , Salmonella enteritidis/genética , Virulência/genética , Água/farmacologia , Dessecação , Células CACO-2 , Pós , Expressão Gênica
14.
Plant J ; 118(1): 90-105, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38113332

RESUMO

Necrotrophic fungal plant pathogens employ cell death-inducing proteins (CDIPs) to facilitate infection. However, the specific CDIPs and their mechanisms in pathogenic processes of Sclerotinia sclerotiorum, a necrotrophic pathogen that causes disease in many economically important crop species, have not yet been clearly defined. This study found that S. sclerotiorum secretes SsXyl2, a glycosyl hydrolase family 11 xylanase, at the late stage of hyphal infection. SsXyl2 targets the apoplast of host plants to induce cell death independent of xylanase activity. Targeted disruption of SsXyl2 leads to serious impairment of virulence, which can be recovered by a catalytically impaired SsXyl2 variant, thus supporting the critical role of cell death-inducing activity of SsXyl2 in establishing successful colonization of S. sclerotiorum. Remarkably, infection by S. sclerotiorum induces the accumulation of Nicotiana benthamiana hypersensitive-induced reaction protein 2 (NbHIR2). NbHIR2 interacts with SsXyl2 at the plasma membrane and promotes its localization to the cell membrane and cell death-inducing activity. Furthermore, gene-edited mutants of NbHIR2 displayed increased resistance to the wild-type strain of S. sclerotiorum, but not to the SsXyl2-deletion strain. Hence, SsXyl2 acts as a CDIP that manipulates host cell physiology by interacting with hypersensitive induced reaction protein to facilitate colonization by S. sclerotiorum. These findings provide valuable insights into the pathogenic mechanisms of CDIPs in necrotrophic pathogens and lead to a more promising approach for breeding resistant crops against S. sclerotiorum.


Assuntos
Ascomicetos , Melhoramento Vegetal , Plantas , Virulência , Nicotiana , Morte Celular , Doenças das Plantas/microbiologia
15.
Microbiol Spectr ; 11(6): e0261223, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37905914

RESUMO

IMPORTANCE: The broad host range of fungi with differential fungal responses leads to either a pathogenic or an endophytic lifestyle in various host plants. Yet, the molecular basis of schizotrophic fungal responses to different plant hosts remains unexplored. Here, we observed a general increase in the gene expression of S. sclerotiorum associated with pathogenicity in symptomatic rapeseed, including small protein secretion, appressorial formation, and oxalic acid toxin production. Conversely, in wheat, many carbohydrate metabolism and transport-associated genes were induced, indicating a general increase in processes associated with carbohydrate acquisition. Appressorium is required for S. sclerotiorum during colonization in symptomatic hosts but not in endophytic wheat. These findings provide new clues for understanding schizotrophic fungi, fungal evolution, and the emergence pathways of new plant diseases.


Assuntos
Ascomicetos , Brassica napus , Brassica napus/genética , Triticum , Plantas , Ascomicetos/metabolismo , Doenças das Plantas/microbiologia
16.
J Agric Food Chem ; 71(36): 13535-13545, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37665660

RESUMO

Plant lysin motif (LysM) ectodomain receptors interact with pathogen-associated molecular patterns (PAMPs) and have critical functions in plant-microbe interactions. In this study, 65 LysM family genes were identified using the recent version of the reference sequence of bread wheat (Triticum aestivum), in which 23, 16, 20, and 6 members belonged to LysM-containing receptor-like kinases (LYKs), LysM-containing receptor-like proteins (LYPs), extracellular LysM proteins (LysMes), and intracellular nonsecretory LysM proteins (LysMns), respectively. The study found that TaCEBiP, TaLYK5, and TaCERK1 were highly responsive to PAMP elicitors and phytopathogens, with TaCEBiP and TaLYK5 binding directly to chitin. TaCERK1 acted as a coreceptor with TaCEBiP and TaLYK5 at the plasma membrane. Overexpression of TaCEBiP, TaLYK5, and TaCERK1 in Nicotiana benthamiana leaves exhibited enhanced resistance to Sclerotinia sclerotiorum. Subsequently, knocking down TaCEBiP, TaLYK5, and TaCERK1 genes with barley stripe mosaic virus-VIGS compromised the wheat defense response to an avirulent strain of Puccinia striiformis. The study concluded that wheat has two synergistic chitin perception systems for detecting pathogen elicitors, with the activated CERK1 intracellular kinase domain leading to signaling transduction. This research provides valuable insights into the functional roles and regulatory mechanisms of wheat LysM members under biotic stress.


Assuntos
Quitina , Triticum , Triticum/genética , Pão , Membrana Celular , Imunidade
17.
J Fungi (Basel) ; 9(8)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37623603

RESUMO

Rice false smut caused by Ustilaginoidea virens is one of the most devastating fungal diseases of rice (Oryza sativa) worldwide. Prochloraz and azoxystrobin belong to the groups of demethylation inhibitors and quinone outside inhibitors, respectively, and are commonly used for controlling this disease. In this study, we analyzed the sensitivities of 100 U. virens isolates from Yunnan, Sichuan, Chongqing, and Zhejiang in Southern China to prochloraz and azoxystrobin. The ranges of EC50 for prochloraz and azoxystrobin were 0.004-0.536 and 0.020-0.510 µg/mL, with means and standard errors of 0.062 ± 0.008 and 0.120 ± 0.007 µg/mL, respectively. However, the sensitivity frequency distributions of U. virens to prochloraz and azoxystrobin indicated the emergence of subpopulations with decreased sensitivity. Therefore, the mean EC50 values of 74% and 68% of the isolates at the main peak, 0.031 ± 0.001 and 0.078 ± 0.004 µg/mL, were used as the sensitivity baselines of U. virens to prochloraz and azoxystrobin, respectively. We found significant sensitivity differences to azoxystrobin among different geographical populations and no correlation between the sensitivities of U. virens to prochloraz and azoxystrobin. Among 887 U. virens isolates, the isolate 5-3-1 from Zhejiang showed moderate resistance to prochloraz, with a resistance factor of 22.45, while no nucleotide variation in the 1986-bp upstream or 1827-bp gene regions of CYP51 from 5-3-1 was detected. Overexpression of CYP51 is probably responsible for its resistance to prochloraz. Finally, artificial inoculation showed that 5-3-1 was highly pathogenic to rice, suggesting that the resistance of U. virens to prochloraz must be monitored and managed in Zhejiang.

18.
Mol Plant Pathol ; 24(12): 1467-1479, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37486146

RESUMO

Plants have the ability to recognize the essential chitin molecule present in the fungal cell wall, which stimulates the immune response. Phytopathogenic fungi have developed various strategies to inhibit the chitin-triggered immune response. Here, we identified a chitin deacetylase of Puccinia striiformis f. sp. tritici (Pst), known as PsCDA2, that was induced during the initial invasion of wheat and acted as an inhibitor of plant cell death. Knockdown of PsCDA2 in wheat enhanced its resistance against Pst, highlighting the significance of PsCDA2 in the host-pathogen interaction. Moreover, PsCDA2 can protect Pst urediniospores from being damaged by host chitinase in vitro. PsCDA2 also suppressed the basal chitin-induced plant immune response, including the accumulation of callose and the expression of defence genes. Overall, our results demonstrate that Pst secretes PsCDA2 as a chitin deacetylase involved in establishing infection and modifying the acetyl group to prevent the breakdown of chitin in the cell wall by host endogenous chitinases. Our research unveils a mechanism by which the fungus suppresses plant immunity, further contributing to the understanding of wheat stripe rust control. This information could have significant implications for the development of suitable strategies for protecting crops against the devastating effects of this disease.


Assuntos
Basidiomycota , Triticum , Virulência/genética , Triticum/microbiologia , Quitina/metabolismo , Doenças das Plantas/microbiologia , Basidiomycota/genética
19.
Ann Bot ; 132(1): 121-132, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37279964

RESUMO

BACKGROUND AND AIMS: Plants can respond to drought by changing their relative investments in the biomass and morphology of each organ. The aims of this study were to quantify the relative contribution of changes in morphology vs. allocation and determine how they affect each other. These results should help us understand the mechanisms that plants use to respond to drought events. METHODS: In a glasshouse experiment, we applied a drought treatment (well-watered vs. drought) at early and late stages of plant growth, leading to four treatment combinations (well-watered in both early and late periods, WW; drought in the early period and well-watered in the late period, DW; well-watered in the early period and drought in the late period, WD; drought in both early and late periods, DD). We used the variance partitioning method to compare the contribution of organ (leaf and root) biomass allocation and morphology to the leaf area ratio, root length ratio and root area ratio, for the rhizomatous grass Leymus chinensis (Trin.) Tzvelev. KEY RESULTS: Compared with the continuously well-watered treatment, the leaf area ratio, root length ratio and root area ratio showed increasing trends under various drought treatments. The contribution of leaf mass allocation to leaf area ratio differed among the drought treatments and was 2.1- to 5.3-fold greater than leaf morphology, and the contribution of root mass allocation to root length ratio was ~2-fold greater than that of root morphology. In contrast, root morphology contributed more to the root area ratio than biomass allocation under drought in both the early and late periods. There was a negative correlation between the ratio of leaf mass fraction to root mass fraction and the ratio of specific leaf area to specific root length (or specific root area). CONCLUSIONS: This study suggested that organ biomass allocation drove a larger proportion of variation than morphological traits for the absorption of resources in this rhizomatous grass. These findings should help us understand the adaptive mechanisms of plants when they are confronted with drought stress.


Assuntos
Secas , Água , Fenótipo , Rizoma , Folhas de Planta/anatomia & histologia , Poaceae , Biomassa
20.
Microbiol Spectr ; 11(3): e0098623, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37140432

RESUMO

Glycosylphosphatidylinositol (GPI) anchoring of proteins is a conserved posttranslational modification in eukaryotes. GPI-anchored proteins are widely distributed in fungal plant pathogens, but the specific roles of the GPI-anchored proteins in the pathogenicity of Sclerotinia sclerotiorum, a devastating necrotrophic plant pathogen with a worldwide distribution, remain largely unknown. This research addresses SsGSR1, which encodes an S. sclerotiorum glycine- and serine-rich protein named SsGsr1 with an N-terminal secretory signal and a C-terminal GPI-anchor signal. SsGsr1 is located at the cell wall of hyphae, and deletion of SsGSR1 leads to abnormal cell wall architecture and impaired cell wall integrity of hyphae. The transcription levels of SsGSR1 were maximal in the initial stage of infection, and SsGSR1-deletion strains showed impaired virulence in multiple hosts, indicating that SsGSR1 is critical for the pathogenicity. Interestingly, SsGsr1 targeted the apoplast of host plants to induce cell death that relies on the glycine-rich 11-amino-acid repeats arranged in tandem. The homologs of SsGsr1 in Sclerotinia, Botrytis, and Monilinia species contain fewer repeat units and have lost their cell death activity. Moreover, allelic variants of SsGSR1 exist in field isolates of S. sclerotiorum from rapeseed, and one of the variants lacking one repeat unit results in a protein that exhibits loss of function relative to the cell death-inducing activity and the virulence of S. sclerotiorum. Taken together, our results demonstrate that a variation in tandem repeats provides the functional diversity of GPI-anchored cell wall protein that, in S. sclerotiorum and other necrotrophic pathogens, allows successful colonization of the host plants. IMPORTANCE Sclerotinia sclerotiorum is an economically important necrotrophic plant pathogen and mainly applies cell wall-degrading enzymes and oxalic acid to kill plant cells before colonization. In this research, we characterized a glycosylphosphatidylinositol (GPI)-anchored cell wall protein named SsGsr1, which is critical for the cell wall architecture and the pathogenicity of S. sclerotiorum. Additionally, SsGsr1 induces rapid cell death of host plants that is dependent on glycine-rich tandem repeats. Interestingly, the number of repeat units varies among homologs and alleles of SsGsr1, and such a variation creates alterations in the cell death-inducing activity and the role in pathogenicity. This work advances our understanding of the variation of tandem repeats in accelerating the evolution of a GPI-anchored cell wall protein associated with the pathogenicity of necrotrophic fungal pathogens and prepares the way toward a fuller understanding of the interaction between S. sclerotiorum and host plants.


Assuntos
Ascomicetos , Fabaceae , Virulência , Glicosilfosfatidilinositóis/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ascomicetos/genética , Ascomicetos/metabolismo , Plantas/metabolismo , Parede Celular/metabolismo , Morte Celular , Proteínas Ligadas por GPI/metabolismo , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...