Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
2.
ACS Appl Mater Interfaces ; 16(21): 27944-27951, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38764370

RESUMO

Manipulating magnetization via power-efficient spin-orbit torque (SOT) has garnered significant attention in the field of spin-based memory and logic devices. However, the damping-like SOT efficiency (ξDL) in heavy metal (HM)/ferromagnetic metal (FM) bilayers is relatively small due to the strong spin dephasing accompanied by additional spin polarization decay. Furthermore, the perpendicular magnetic anisotropy (PMA) originating from the HM/FM interface is constrained by the thickness of FM, which is unfavorable for thermal stability in practical applications. Consequently, it is valuable to develop systems that not only exhibit large ξDL but also balance thermal stability. In this work, we designed antiferromagnetic-coupled [Co/Gd]N multilayers, where staggered Co and Gd magnetic moments effectively suppress the spin dephasing and additional spin polarization decay. The ordered Co-Gd arrangements along the out-of-plane direction provide bulk PMA, endowing Pt/[Co/Gd]N high thermal stability. The SOT of Pt/[Co/Gd]N was systematically studied with N, demonstrating a significantly large ξDL of up to 0.66. The ξDL of Pt/[Co/Gd]N is greater than those of Pt/Co and Pt/ferrimagnetic alloys. This significant enhancement relies on the effective suppression of spin dephasing in [Co/Gd]N. Our work highlights that the antiferromagnetic-coupled [Co/Gd]N multilayer is a promising candidate for low-consumption and high-density spintronic devices.

3.
Int J Biol Macromol ; 271(Pt 2): 132672, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38810855

RESUMO

Wound infection not only hinders the time sequence of tissue repair, but also may lead to serious complications. Multifunctional wound dressings with biocompatibility, excellent mechanical properties and antibacterial properties can promote wound healing during skin infection and reduce the use of antibiotics. In this study, a multifunctional dual-network antibacterial hydrogel was constructed based on the electrostatic interaction of two polyelectrolytes, hydroxypropyl trimethyl ammonium chloride chitosan (HACC) and sodium alginate (SA). Attributing to the suitable physical crosslinking between HACC and SA, the hydrogel not only has good biocompatibility, mechanical property, but also has broad-spectrum antibacterial properties. In vivo results showed that the hydrogel could regulate M2 polarization, promote early vascular regeneration, and create a good microenvironment for wound healing. Therefore, this hydrogel is an effective multifunctional wound dressing. Consequently, we propose a novel hydrogel with combined elements to expedite the intricate repair of wound infection.

4.
Nano Lett ; 24(15): 4454-4461, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38572779

RESUMO

Colloidal quantum well (CQW) based light emitting diodes (LEDs) possess extra-high theoretical efficiency, but their performance still lags far behind conventional LEDs due to severe exciton quenching and unbalanced charge injection. Herein, we devised a gradient composition CdxZn1-xS shell to address these issues. The epitaxial shell with gradient composition was achieved through controlling competition between Cd2+ and Zn2+ cations to preferentially bind to the anions S2-. Thus, exciton quenching was suppressed greatly by passivating defects and reducing nonradiative recombination, thereby achieving near-unity photoluminescence quantum yield (PLQY). The gradient energy level of the shell reduced the hole injection barriers and increased the hole injection efficiency to balance the charge injection of LEDs. As a result, the LEDs achieved a high external quantum efficiency (EQE) of 22.83%, luminance of 111,319 cd/m2 and a long operational lifetime (T95@100 cd/m2) over 6,500 h, demonstrating the state-of-the-art performance for the CQW based LEDs.

5.
Anal Methods ; 16(18): 2878-2887, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38639924

RESUMO

Shikimic acid (SA) is one of the most effective drugs against the A (H1N1) virus and has high medicinal value. Additionally, it has the ability to generate non-toxic herbicides and antimicrobial medications. The extraction from plants has proven to be the main route of production of SA with economic benefits and environmental efficiency. Therefore, it is necessary to perform purification of SA from these herbal medicines before quantifying it. In this study, researchers employed a boronate affinity-based controlled oriented surface imprinting technique to produce molecularly imprinted polymers (MIPs) as highly effective solid phase extraction (SPE) adsorbents for the isolation and purification of SA. 3-Fluoro-4-formylphenylboronic acid functionalized silica nanoparticles were used as supporting materials for immobilizing SA. Poly(2-anilinoethanol) with a higher hydrophilic domain can be used as an effective imprinting coating. The prepared SA-imprinted silica nanoparticles exhibited several significant results, such as good specificity, high binding capacity (39.06 ± 2.24 mg g-1), moderate binding constant (6.61 × 10-4 M-1), fast kinetics (8 min) and low binding pH (pH 5.0) toward SA. The replication of SA-imprinted silica nanoparticles was deemed satisfactory. The SA-imprinted silica nanoparticles could be still reused after seven adsorption-desorption cycles, which indicated high chemical stability. In addition, the recoveries of the proposed method for SA at three spiked level analysis in star aniseed and meadow cranesbill were 96.2% to 109.0% and 91.6% to 103.5%, respectively. The SA-imprinted silica nanoparticles that have been prepared are capable of identifying the target SA in real herbal medicines. Our approach makes sample pre-preparation simple, fast, selective and efficient.


Assuntos
Ácidos Borônicos , Impressão Molecular , Nanopartículas , Ácido Chiquímico , Dióxido de Silício , Extração em Fase Sólida , Dióxido de Silício/química , Nanopartículas/química , Impressão Molecular/métodos , Ácido Chiquímico/química , Ácido Chiquímico/isolamento & purificação , Ácidos Borônicos/química , Extração em Fase Sólida/métodos , Polímeros Molecularmente Impressos/química , Adsorção , Medicina Herbária/métodos
6.
RSC Adv ; 14(16): 10874-10883, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38577422

RESUMO

Antibacterial hydrogels have gained considerable attention for soft tissue repair, particularly in preventing infections associated with wound healing. However, developing an antibacterial hydrogel that simultaneously possesses excellent cell affinity and controlled release of metal ions remains challenging. This study introduces an antibacterial hydrogel based on alginate modified with bisphosphonate, forming a coordination complex with magnesium ions. The hydrogel, through an interpenetrating network with silk fibroin, effectively controls the release of magnesium ions and enhances strain resistance. The Alg-Mg/SF hydrogel not only demonstrates outstanding biocompatibility and broad-spectrum antibacterial properties but also stimulates macrophages to secrete anti-inflammatory factors. This advanced Alg-Mg/SF hydrogel provides a convenient therapeutic approach for chronic wound management, showcasing its potential applications in wound healing and other relevant biomedical fields.

7.
J Mater Chem B ; 12(9): 2217-2235, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38345580

RESUMO

During the process of peripheral nerve repair, there are many complex pathological and physiological changes, including multi-cellular responses and various signaling molecules, and all these events establish a dynamic microenvironment for axon repair, regeneration, and target tissue/organ reinnervation. The immune system plays an indispensable role in the process of nerve repair and function recovery. An effective immune response not only involves innate-immune and adaptive-immune cells but also consists of chemokines and cytokines released by these immune cells. The elucidation of the orchestrated interplay of immune cells with nerve regeneration and functional restoration is meaningful for the exploration of therapeutic strategies. This review mainly enumerates the general immune cell response to peripheral nerve injury and focuses on their contributions to functional recovery. The tissue engineering-mediated strategies to regulate macrophages and T cells through physical and biochemical factors combined with scaffolds are discussed. The dynamic immune responses during peripheral nerve repair and immune-cell-mediated tissue engineering methods are presented, which provide a new insight and inspiration for immunomodulatory therapies in peripheral nerve regeneration.


Assuntos
Traumatismos dos Nervos Periféricos , Humanos , Traumatismos dos Nervos Periféricos/terapia , Engenharia Tecidual , Nervos Periféricos , Regeneração Nervosa , Macrófagos
8.
Bioact Mater ; 35: 401-415, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38384987

RESUMO

Peripheral nerve injury (PNI) seriously affects the health and life of patients, and is an urgent clinical problem that needs to be resolved. Nerve implants prepared from various biomaterials have played a positive role in PNI, but the effect should be further improved and thus new biomaterials is urgently needed. Ovalbumin (OVA) contains a variety of bioactive components, low immunogenicity, tolerance, antimicrobial activity, non-toxicity and biodegradability, and has the ability to promote wound healing, cell growth and antimicrobial properties. However, there are few studies on the application of OVA in neural tissue engineering. In this study, OVA implants with different spatial structures (membrane, fiber, and lyophilized scaffolds) were constructed by casting, electrospinning, and freeze-drying methods, respectively. The results showed that the OVA implants had excellent physicochemical properties and were biocompatible without significant toxicity, and can promote vascularization, show good histocompatibility, without excessive inflammatory response and immunogenicity. The in vitro results showed that OVA implants could promote the proliferation and migration of Schwann cells, while the in vivo results confirmed that OVA implants (the E5/70% and 20 kV 20 µL/min groups) could effectively regulate the growth of blood vessels, reduce the inflammatory response and promote the repair of subcutaneous nerve injury. Further on, the high-throughput sequencing results showed that the OVA implants up-regulated differential expression of genes related to biological processes such as tumor necrosis factor-α (TNF-α), phosphatidylinositide 3-kinases/protein kinase B (PI3K-Akt) signaling pathway, axon guidance, cellular adhesion junctions, and nerve regeneration in Schwann cells. The present study is expected to provide new design concepts and theoretical accumulation for the development of a new generation of nerve regeneration implantable biomaterials.

9.
Bioact Mater ; 33: 572-590, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38111651

RESUMO

A central question in neural tissue engineering is how the tissue-engineered nerve (TEN) translates detailed transcriptional signals associated with peripheral nerve regeneration into meaningful biological processes. Here, we report a skin-derived precursor-induced Schwann cell (SKP-SC)-mediated chitosan/silk fibroin-fabricated tissue-engineered nerve graft (SKP-SCs-TEN) that can promote sciatic nerve regeneration and functional restoration nearly to the levels achieved by autologous nerve grafts according to behavioral, histological, and electrophysiological evidence. For achieving better effect of neuroregeneration, this is the first time to jointly apply a dynamic perfusion bioreactor and the ascorbic acid to stimulate the SKP-SCs secretion of extracellular matrix (ECM). To overcome the limitation of traditional tissue-engineered nerve grafts, jointly utilizing SKP-SCs and their ECM components were motivated by the thought of prolongating the effect of support cells and their bioactive cues that promote peripheral nerve regeneration. To further explore the regulatory model of gene expression and the related molecular mechanisms involved in tissue engineering-aided peripheral nerve regeneration, we performed a cDNA microarray analysis of gene expression profiling, a comprehensive bioinformatics analysis and a validation study on the grafted segments and dorsal root ganglia tissues. A wealth of transcriptomic and bioinformatics data has revealed complex molecular networks and orchestrated functional regulation that may be responsible for the effects of SKP-SCs-TEN on promoting peripheral nerve regeneration. Our work provides new insights into transcriptomic features and patterns of molecular regulation in nerve functional recovery aided by SKP-SCs-TEN that sheds light on the broader possibilities for novel repair strategies of peripheral nerve injury.

10.
Biomater Sci ; 11(22): 7358-7372, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37781974

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) has a signature of extremely high matrix stiffness caused by a special desmoplastic reaction, which dynamically stiffens along with the pathological process. The poor prognosis and low five-year survival rate of PDAC are partly owing to chemoresistance triggered by substrate stiffness. Understanding the potential mechanisms of matrix stiffness causing PDAC chemoresistance is of great significance. In this study, methacrylated gelatin hydrogel was used as platform for PANC-1 and MIA-PaCa2 cell culture. The results indicated that compared to soft substrate, stiff substrate distinctively reduced the gemcitabine sensitivity of pancreatic cancer. Intriguingly, transmission electron microscopy, immunofluorescence staining, western blot and qRT-PCR assay showcased that the number of autophagosomes and the expression of LC3 were elevated. The observations indicate that matrix stiffness may regulate the autophagy level, which plays a vital role during chemoresistance. In brief, soft substrate exhibited low autophagy level, while the counterpart displayed elevated autophagy level. In order to elucidate the underlying interaction between matrix stiffness-mediated cell autophagy and chemoresistance, rescue experiments with rapamycin and chloroquine were conducted. We found that inhibiting cell autophagy dramatically increased the sensitivity of pancreatic cancer cells to gemcitabine in the stiff group, while promoting autophagy-driven chemoresistance in the soft group, demonstrating that matrix stiffness modulated chemoresistance via autophagy. Furthermore, RNA-seq results showed that miR-1972 may regulate autophagy level in response to matrix stiffness. Overall, our research shed light on the synergistic therapy of PDAC combined with gemcitabine and chloroquine, which is conducive to promoting a therapeutic effect.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Desoxicitidina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Gencitabina , Neoplasias Pancreáticas/tratamento farmacológico , Autofagia , Cloroquina , Proliferação de Células , Neoplasias Pancreáticas
11.
Macromol Rapid Commun ; 44(24): e2300451, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37795776

RESUMO

Lithium-sulfur (Li-S) battery features a high theoretical energy density, but the shuttle of soluble polysulfides between the two electrodes often results in a rapid capacity decay. Herein, a straightforward electrostatic adsorption strategy based on a cross-linked polyimidazolium separator as a snaring shield of polysulfides is reported, which suppresses the undesirable migration of polysulfides to the anode. The porous ionic network (PIN)-modified carbon nanotubes (CNTs) are successfully prepared and coated onto a commercial porous polypropylene membrane in a vacuum-filtration step. The favorable affinity of the imidazolium ring toward polysulfide via the polar interaction and the electrostatic effect of ions mitigates the undesirable shuttle of polysulfides in the electrolyte, improving the Li─S battery in terms of rate performance and cycling life. Compared to the reference PIN-free CNT-coated separator, the PIN/CNT-coated one has an increased initial capacity of 1.3 folds (up to 1394.8 mAh g-1 for PIN/CNT/PP-3) at 0.1 C.


Assuntos
Lítio , Nanotubos de Carbono , Porosidade , Íons , Enxofre
12.
Med Biol Eng Comput ; 61(12): 3409-3417, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37684494

RESUMO

The cross-teaching based on Convolutional Neural Network (CNN) and Transformer has been successful in semi-supervised learning; however, the information interaction between local and global relations ignores the semantic features of the medium scale, and at the same time, the information in the process of feature coding is not fully utilized. To solve these problems, we proposed a new semi-supervised segmentation network. Based on the principle of complementary modeling information of different kernel convolutions, we design a dual CNN cross-supervised network with different kernel sizes under cross-teaching. We introduce global feature contrastive learning and generate contrast samples with the help of dual CNN architecture to make efficient use of coding features. We conducted plenty of experiments on the Automated Cardiac Diagnosis Challenge (ACDC) dataset to evaluate our approach. Our method achieves an average Dice Similarity Coefficient (DSC) of 87.2% and Hausdorff distance ([Formula: see text]) of 6.1 mm on 10% labeled data, which is significantly improved compared with many current popular models. Supervised learning is performed on the labeled data, and dual CNN cross-teaching supervised learning is performed on the unlabeled data. All data would be mapped by the two CNNs to generate features, which are used for contrastive learning to optimize the parameters.


Assuntos
Fontes de Energia Elétrica , Coração , Redes Neurais de Computação , Semântica , Aprendizado de Máquina Supervisionado , Processamento de Imagem Assistida por Computador
13.
Bioorg Chem ; 141: 106875, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37757670

RESUMO

Photodynamic therapy (PDT) is a clinically approved treatment for cancer due to its high spatiotemporal selectivity and non-invasive modality. However, its therapeutic outcomes are always limited to the severe hypoxia environment of the solid tumor. Herein, two novel photosensitizers HY and HYM based on naturally antitumor alkaloids ß-carboline were designed and synthesized. Through a series of experiments, we found HY and HYM can produce type II ROS (singlet oxygen) after light irradiation. HYM had higher singlet oxygen quantum yield and molar extinction coefficient than HY, as well as type I PDT behavior, which further let us find that HYM could exhibit robust phototoxicity activities in both normoxia and hypoxia. Meanwhile, HYM showed tumor-selective cytotoxicity with minimal toxicity toward normal cells. Notably, thanks to HYM's hypoxia-tolerant type I/II PDT and tumor selective chemotherapy, HYM showed synergistic inhibitory effect on tumor growth (inhibition rate > 91%). Our research provides a promising photosensitizer for hypoxia-tolerant chemo-photodynamic therapy, and may also give a novel molecular skeleton for photosensitizer design.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Oxigênio Singlete , Hipóxia/tratamento farmacológico , Neoplasias/tratamento farmacológico , Carbolinas/farmacologia , Carbolinas/uso terapêutico , Linhagem Celular Tumoral
14.
Theranostics ; 13(13): 4497-4511, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37649597

RESUMO

Rationale: Challenges such as developing a universal tumor-specific probe for tumor margin identification in diverse tumors with an easy-operative and fast-imaging pattern still exist. Hence, in the present study, a rapidly "off-on" near-infrared (NIR) fluorescent probe NBD with pH-activatable fluorescence and a large Stokes shift was constructed for spray mediated near-instant and precise clinical tumor margins identification. Methods: NBD was designed and synthesized by introducing both diphenyl amino group and benzo[e]indolium to ß-carboline at C-6 and C-3 positions respectively. The optical properties of NBD was characterized by absorption spectra, fluorescence spectra. Subsequently, we investigated its pH-dependent mechanism by 1H NMR and density functional theory (DFT) calculation. NBD was further under deeper investigation into its imaging performance in nude mice models (subcutaneous, orthotopic, metastatic tumor), and clinical tissues from patients with three clinically representative tumors (liver cancer, colon cancer, and lung cancer). Results: It was found that NBD had NIR fluorescence (742 nm), a large Stokes shift (160 nm), and two-photon absorbance (1040 nm). Fluorescence quantum yield (ФF) increased by 5.5-fold when pH decreased from 7.4 to 4.0, to show pH-dependent property. Furthermore, NBD could not only selectively light up all four cancer cell lines, but also delineate xenograft tumor and orthotopic microtumor to guide surgical tumor resection, and track metastatic tissues. Particularly, after simple topical spray (three minutes later), NBD could rapidly and precisely distinguish the boundary ranges of three kinds of clinical cancer specimens including liver, colon, and lung cancers, with high tumor-to-normal tissue signal ratios (6.48~9.80). Conclusions: Therefore, the proposed fluorescent probe NBD may serve as a versatile NIR fluorogenic spray for the near-instant visualization of tumor margins and assisting surgeons in surgerical resection of clinical cancers.


Assuntos
Neoplasias do Colo , Neoplasias Pulmonares , Animais , Camundongos , Humanos , Corantes Fluorescentes , Camundongos Nus , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/cirurgia , Concentração de Íons de Hidrogênio
15.
Adv Sci (Weinh) ; 10(28): e2302519, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37612810

RESUMO

The development of self-healing conductive hydrogels is critical in electroactive nerve tissue engineering. Typical conductive materials such as polypyrrole (PPy) are commonly used to fabricate artificial nerve conduits. Moreover, the field of tissue engineering has advanced toward the use of products such as hyaluronic acid (HA) hydrogels. Although HA-modified PPy films are prepared for various biological applications, the cell-matrix interaction mechanisms remain poorly understood; furthermore, there are no reports on HA-modified PPy-injectable self-healing hydrogels for peripheral nerve repair. Therefore, in this study, a self-healing electroconductive hydrogel (HASPy) from HA, cystamine (Cys), and pyrrole-1-propionic acid (Py-COOH), with injectability, biodegradability, biocompatibility, and nerve-regenerative capacity is constructed. The hydrogel directly targets interleukin 17 receptor A (IL-17RA) and promotes the expression of genes and proteins relevant to Schwann cell myelination mainly by activating the interleukin 17 (IL-17) signaling pathway. The hydrogel is injected directly into the rat sciatic nerve-crush injury sites to investigate its capacity for nerve regeneration in vivo and is found to promote functional recovery and remyelination. This study may help in understanding the mechanism of cell-matrix interactions and provide new insights into the potential use of HASPy hydrogel as an advanced scaffold for neural regeneration.

16.
Bioact Mater ; 30: 85-97, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37575879

RESUMO

Tissue regeneration requires exogenous and endogenous signals, and there is increasing evidence that the exogenous microenvironment may play an even more dominant role in the complex process of coordinated multiple cells. The short-distance peripheral nerve showed a spontaneous regenerative phenomenon, which was initiated by the guiding role of macrophages. However, it cannot sufficiently restore long-distance nerve injury by itself. Based on this principle, we firstly constructed a proinflammatory model to prove that abnormal M2 expression reduce the guidance and repair effect of long-distance nerves. Furthermore, a bionic peptide hydrogel scaffold based on self-assembly was developed to envelop M2-derived regenerative cytokines and extracellular vesicles (EVs). The cytokines and EVs were quantified to mimic the guidance and regenerative microenvironment in a direct and mild manner. The bionic scaffold promoted M2 transformation in situ and led to proliferation and migration of Schwann cells, neuron growth and motor function recovery. Meanwhile, the peptide scaffold combined with CX3CL1 recruited more blood-derived M2 macrophages to promote long-distance nerve reconstruction. Overall, we systematically confirmed the important role of M2 in regulating and restoring the injury peripheral nerve. This bionic peptide hydrogel scaffold mimicked and remodeled the local environment for M2 transformation and recruitment, favoring long-distance peripheral nerve regeneration. It can help to explicate regulative effect of M2 may be a cause not just a consequence in nerve repair and tissue integration, which facilitating the development of pro-regenerative biomaterials.

17.
ACS Biomater Sci Eng ; 9(8): 4761-4769, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37424070

RESUMO

Since the physical properties are similar to native extracellular matrices, double network (DN) hydrogels have been studied extensively in the tissue engineering. However, the double chemical crosslinked DN hydrogel is limited by poor fatigue resistance. π-π stacking is a non-covalent bonding interaction, which is essential to maintain and self-assemble the three-dimensional structure of biological proteins and nucleic acids. In this study, a robust polyethylene glycol diacrylate (PEGDA)/FFK hybrid DN hydrogel was prepared by Michael addition and π-π stacking. The hybrid DN hydrogels with π-π stacking interactions have excellent mechanical strength and fatigue resistance. The DN FFK/PEGDA hydrogels reveal great biocompatibility and hemocompatibility. The DN hydrogels containing π-π stacking have the potential to fabricate robust hybrid DN hydrogels in drug release and tissue engineering.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Hidrogéis/química , Peptídeos , Engenharia Tecidual , Matriz Extracelular
18.
J Texture Stud ; 54(6): 893-901, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37401106

RESUMO

The viscoelastic properties of food materials will change significantly while drying is in progress, which greatly influences the food deformation caused by drying. This study aims to predict the viscoelastic mechanical behavior of Hami melon during drying using the fractional derivative model. To characterize the relaxation characteristics, based on the finite difference method, an improved Grünwald-Letnikov fractional stress relaxation model is proposed to derive an approximate discrete numerical solution of the relaxation modulus by applying the time fractional calculus. The Laplace transform method is used to verify the obtained results, and the equivalence of the two methods is proved. In addition, the stress relaxation tests prove that the fractional derivative model has a better prediction effect on the stress relaxation behavior of viscoelastic food than classical Zener model. The significant correlations between the fractional order and the stiffness coefficient and the moisture content is also studied. Which is negative correlation and positive correlation respectively.


Assuntos
Cucurbitaceae , Dessecação , Elasticidade , Viscosidade
19.
Angew Chem Int Ed Engl ; 62(34): e202306039, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37314932

RESUMO

Development of thermosets that can be repeatedly recycled via both chemical route (closed-loop) and thermo-mechanical process is attractive and remains an imperative task. In this work, we reported a triketoenamine based dynamic covalent network derived from 2,4,6-triformylphloroglucinol and secondary amines. The resulting triketoenamine based network does not have intramolecular hydrogen bonds, thus reducing its π-electron delocalization, lowering the stability of the tautomer structure, and enabling its dynamic feature. By virtue of the highly reversible bond exchange, this novel dynamic covalent bond enables the easy construction of highly crosslinked and chemically reprocessable networks from commercially available monomers. The as-made polymer monoliths exhibit high mechanical properties (tensile strength of 79.4 MPa and Young's modulus of 571.4 MPa) and can undergo a monomer-network-monomer (yields up to 90 %) recycling mediated by an aqueous solution, with the new-generation polymer capable of restoring the material strength to its original state. In addition, owing to its dynamic nature, a catalyst-free and low-temperature reprogrammable covalent adaptable network (vitrimer) was achieved. The design concept reported herein can be applied to the development of other novel vitrimers with high repressibility and recyclability, and sheds light on future design of sustainable polymers with minimal environmental impact.

20.
Theor Appl Genet ; 136(6): 146, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37258797

RESUMO

KEY MESSAGE: QTgw.saas-5B was validated as a major thousand-grain weight-related QTL in a founder parent used for wheat breeding and then precisely mapped to a 0.6 cM interval. Increasing the thousand-grain weight (TGW) is considered to be one of the most important ways to improve yield, which is a core objective among wheat breeders. Chuanmai42, which is a wheat cultivar with high TGW and a high and stable yield, is a parent of more than 30 new varieties grown in southwestern China. In this study, a Chuanmai42-derived recombinant inbred line (RIL) population was used to dissect the genetic basis of TGW. A major QTL (QTgw.saas-5B) mapped to the Xgwm213-Xgwm540 interval on chromosome 5B of Chuanmai42 explained up to 20% of the phenotypic variation. Using 71 recombinants with a recombination in the QTgw.saas-5B interval identified from a secondary RIL population comprising 1818 lines constructed by crossing the QTgw.saas-5B near-isogenic line with the recurrent parent Chuannong16, QTgw.saas-5B was delimited to a 0.6 cM interval, corresponding to a 21.83 Mb physical interval in the Chinese Spring genome. These findings provide the foundation for QTgw.saas-5B cloning and its use in molecular marker-assisted breeding.


Assuntos
Locos de Características Quantitativas , Triticum , Mapeamento Cromossômico , Triticum/genética , Fenótipo , Melhoramento Vegetal , Grão Comestível/genética , China , Cromossomos de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...