Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 7(6): 3991-3996, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38835291

RESUMO

Mitigating the adverse effects of anticancer agents requires innovative prodrug engineering. In this study, we showcase the potential of our o-quinone methide-based trigger-release-conjugation platform as a versatile tool for constructing advanced prodrug systems. Using this platform, we achieved the light-triggered release of an anticancer drug mechlorethamine, targeting mitochondrial DNA. The entire process was adeptly tracked through the emission of fluorescence signals, revealing notable effects across various cancer cell lines compared to a normal cell line. Exploring alternative cancer-associated triggers, including enzymes, and incorporating cancer/tumor-specific targeting elements could lead to effective prodrugs with reduced cytotoxicity.


Assuntos
Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Luz , Mitocôndrias , Pró-Fármacos , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Teste de Materiais , Estrutura Molecular , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Fluorescência , Tamanho da Partícula , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Liberação Controlada de Fármacos
2.
Anal Chem ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940602

RESUMO

Several reductases, including nitroreductase, are upregulated under hypoxic conditions characterized by an oxygen-deficient microenvironment. Given that hypoxia is a prominent feature of solid tumors, our investigation focused on developing a bioconjugative probe designed for staining tissue under hypoxic conditions, particularly activated by nitroreductase. This probe, developed using our trigger-release-bioconjugation system rooted in the ortho-quinone methide chemistry, exhibited selective activation by nitroreductase and fluorophore labeling within mitochondria and endoplasmic reticulum. As a result, it displayed sustained fluorescence that persisted even after washing steps in cells and tissues. We applied this innovative probe to stain mouse kidney tissue in an acute kidney injury model induced by inadequate oxygen supply. Among various organ tissues examined, only kidney tissue showed significantly higher fluorescence in the injury model compared with the control tissue, as revealed by two-photon microscopic imaging. This research presents a promising avenue for the development of practical staining agents for image-guided tumor surgery.

3.
Chem Soc Rev ; 52(18): 6344-6358, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37608780

RESUMO

Organic fluorophores aided by current microscopy imaging modalities are essential for studying biological systems. Recently, red/near-infrared emitting fluorophores have attracted great research efforts, as they enable bioimaging applications with reduced autofluorescence interference and light scattering, two significant obstacles for deep-tissue imaging, as well as reduced photodamage and photobleaching. Herein, we analyzed the current strategies to convert key organic fluorophores bearing xanthene, coumarin, and naphthalene cores into longer wavelength-emitting derivatives by focussing on their effectiveness and limitations. Together, we introduced typical examples of how such fluorophores can be used to develop molecular probes for biological analytes, along with key sensing features. Finally, we listed several critical issues to be considered in developing new fluorophores.


Assuntos
Corantes Fluorescentes , Sondas Moleculares , Ionóforos , Microscopia
4.
ACS Sens ; 8(7): 2791-2798, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37405930

RESUMO

Aminopeptidase N (APN), a transmembrane ectoenzyme, plays multifunctional roles in cell survival and migration, angiogenesis, blood pressure regulation, and viral uptake. Abnormally high levels of the enzyme can be found in some tumors and injured liver and kidney. Therefore, noninvasive detection methods for APN are in demand for diagnosing and studying the associated diseases, leading to two dozen activatable small-molecule probes reported up to date. All of the known probes, however, analyze the enzyme activity by monitoring fluorescent molecules inside cells, despite the enzymatic reaction taking place on the outer cell membrane. In this case, different cell permeability and enzyme kinetics can cause false signal data. To address this critical issue, we have developed two cell-membrane-localizing APN probes whose enzymatic products also localize the outer cell membrane. The probes selectively respond to APN with ratiometric fluorescence signal changes. A selected probe, which has two-photon imaging capability, allowed us to determine the relative APN levels in various organ tissues for the first time: 4.3 (intestine), 2.1 (kidney), 2.7 (liver), 3.2 (lung), and 1.0 (stomach). Also, a higher APN level was observed from a HepG2-xenograft mouse tissue in comparison with the normal tissue. Furthermore, we observed a significant APN level increase in the mouse liver of a drug (acetaminophen)-induced liver injury model. The probe thus offers a reliable means for studying APN-associated biology including drug-induced hepatotoxicity simply by ratiometric imaging.


Assuntos
Antígenos CD13 , Humanos , Animais , Camundongos , Antígenos CD13/metabolismo , Fluorescência , Membrana Celular/metabolismo , Transporte Biológico
5.
ACS Sens ; 7(4): 1068-1074, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35353484

RESUMO

Cancer cells undergo unscheduled proliferation resulting from dysregulation of the cell cycle, and hence, evaluation in tumor is of keen interest to examine the invasiveness and recurrence of cancer in the lesion. Molecular probes capable of discriminating actively growing tumor from resting ones remain unexplored despite their vast importance. Here, we describe a novel strategy to visualize invasive areas in tumor with a fluorescence probe that implements synergistic fluorescence response toward the slightly acidic environment of tumor and an ATP-abundant nature of actively growing cells. The probe has been designed for ultrafast detection of ATP with high specificity. We demonstrate its utility in visualizing invasive areas in tumor by distinguishing basal cell carcinomas and squamous cell carcinomas at their early stages by two-photon microscopy.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Cutâneas , Trifosfato de Adenosina , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Humanos , Prótons , Pele/metabolismo , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/patologia
6.
Anal Chem ; 94(2): 1373-1381, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34990113

RESUMO

Elastase, a serine protease, plays important roles in our body in food digestion and defence against pathogens. Particularly, the elastase present in neutrophils is directly associated with inflammatory bowel disease (IBD). Through a rational approach, we have developed a fluorescent elastase probe that has multiple advantages for biological applications including two-photon ratiometric imaging capability. Using the probe, which is capable of detecting intracellular elastase activity associated with inflammation, we have investigated elastase level changes in various mouse organs under an IBD condition for the first time. The results reveal notably higher elastase levels in the liver and duodenum of the healthy mice than in the other investigated organs. Under the IBD condition, we observed significant elastase level changes in the liver, duodenum, colon, and lung. The downregulation of elastase in the liver under the IBD condition suggests migration of neutrophils into the upregulated organs. The notable upregulation of elastase in the duodenum is explained by self-production of elastase, in addition to the neutrophil migration from the liver. We have observed little elastase level changes in selected organs of immune-deficient mice raised under the normal and IBD conditions, which supports the neutrophil migration as the reason for perturbed elastase activity in the healthy mice. The results also suggest an important role of the liver in maintaining the immune response associated with the inflammation-induced elastase level changes. The probe offers an ideal tool for mapping neutrophil migration in body. Further understanding of the elastase-associated biology and diagnosis of IBD by monitoring affected organs are anticipated using the probe.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Inflamação , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/diagnóstico por imagem , Elastase de Leucócito , Camundongos , Neutrófilos
7.
ACS Sens ; 6(9): 3253-3261, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34467757

RESUMO

Reactive oxygen species (ROS) produced by an inflammatory response in the brain are associated with various neurological disorders. To investigate ROS-associated neuroinflammatory diseases, fluorescent probes with practicality are in demand. We have investigated hypochlorous acid, an important ROS, in the brain tissues of neuroinflammation and maternal immune activation (MIA) model mice, using a new fluorescent probe. The probe has outstanding features over many known probes, such as providing two bright ratio signals in cells and tissues in deep-red/near-infrared wavelength regions with a large spectral separation, in addition to being strongly fluorescent, photo- and chemo-stable, highly selective and sensitive, fast responding, and biocompatible. We have found that the level of hypochlorous acid in the brain tissue of a neuroinflammatory mouse model was higher (2.7-4.0-fold) compared with that in normal brain tissue. Furthermore, the level of hypochlorous acid in the brain tissue of a MIA mouse model was higher (1.2-1.3-fold) compared with that in the normal brain tissue. The "robust" probe provides a practical tool for studying ROS-associated neurological disorders.


Assuntos
Encéfalo , Ácido Hipocloroso , Animais , Camundongos
8.
Anal Chem ; 93(20): 7523-7531, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-33983712

RESUMO

NAD(P)H quinone oxidoreductase-1 (NQO1), a protective enzyme against cellular oxidative stress, is expressed abnormally high in solid tumors and thus recognized as a cancer biomarker. To develop a fluorescent NQO1 probe with practicality, we investigated benzo-rosol fluorophores linked with a known self-immolative quinone substrate. Four probe candidates exhibited ratiometric sensing behavior toward the enzyme, satisfying our orbital mismatch stratagem proposed before, under dual-excitation and dual-emission conditions that alleviate the spectral overlap issue commonly observed with the ratiometric probes based on intramolecular charge-transfer change. Among the candidates, two ester-linked compounds exhibited hydrolytic instability to water or an esterase, discouraging us to develop such ester-linked probes. One ether-linked, hydrolytically stable probe provided brighter cellular fluorescence than the other and thus was applied to ratiometric imaging of NQO1 in cells and tissues. We found that the enzyme activity levels are much different in organ tissues: stomach (56), kidney (22), colon (9.8), testis (7.8), bladder (5.6), lung (1.2), and muscle (1.0). Furthermore, a markedly high enzyme level (14.6-fold) was observed in a xenograft tumor tissue compared with that in a normal tissue, which suggests that such an NQO1 probe is promising for cancer diagnosis and for studying the enzyme-associated biology.


Assuntos
NAD(P)H Desidrogenase (Quinona) , Neoplasias , Corantes Fluorescentes , Humanos , NAD , Quinonas
9.
ACS Appl Bio Mater ; 4(3): 2089-2096, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35014336

RESUMO

The cell membrane regulates the flux of materials in and out of cell, cell adhesion, and signaling. Fluorophores that selectively localize on it are in demand for investigations of the molecular events occurring on the outer cell membrane. Commercial membrane trackers based on phospholipids are structurally complex and difficult to modify further. We disclose the zwitterionic (naphthylvinyl)pyridinium dyes that selectively localize on the outer cell membrane and emit blue, green, and red fluorescence, respectively. Notably, they are structurally compact and provide bright fluorescence images of the cell membrane. By comparing with control compounds, we identified minimal structural elements for the "robust" localization of dye on the outer cell membrane. Further, the dyes are two-photon active, enabling high-resolution, deep-tissue imaging. One of the dyes was used to image a spleen tissue, which provided high-resolution fluorescent images with a distinct morphology. In addition, the materials and results disclosed are valuable for the development of membrane-targeting probes and structurally compact fluorophores.


Assuntos
Materiais Biocompatíveis/química , Corantes Fluorescentes/química , Naftilvinilpiridina/química , Imagem Óptica , Células A549 , Materiais Biocompatíveis/síntese química , Membrana Celular/química , Membrana Celular/metabolismo , Corantes Fluorescentes/síntese química , Humanos , Teste de Materiais , Estrutura Molecular , Naftilvinilpiridina/análogos & derivados , Naftilvinilpiridina/síntese química , Tamanho da Partícula
10.
Anal Chem ; 92(18): 12678-12685, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32808765

RESUMO

γ-Glutamyl transpeptidase (GGT), a cell surface-bound protease, is associated with various diseases including cancer. The detection of the enzyme activity is an important subject, leading to about 40 activatable fluorescent probes so far. All of them, however, lack the membrane-localizing ability, raising a reliability issue in the quantitative analysis. Disclosed is the first fluorescent probe that senses the cell surface-bound enzyme, which, furthermore, is capable of ratiometric as well as two-photon imaging with desirable features. Ratiometric imaging of cancer cell lines reveals a 6.4-8.4-fold higher GGT levels than those in normal cell lines. A comparison of the enzyme activity in organ tissues of normal and tumor xenograft mice reveals notably different levels of enzyme activity depending on the kind of tissue. Normal tissues exhibited comparable levels of enzyme activity, except the kidney that has significantly higher GGT activity (2.7-4.0-fold) than the other organs. Compared with the normal tissues, considerably higher enzyme activity was observed in the tumor tissues of the thigh (4.0-fold), colon (2.5-fold), lung (3.6-fold), and liver (2.1-fold), but essentially no enhanced activity in the tumor tissues of the spleen, stomach, and pancreas and a comparable level in both the tumor and normal kidney tissues were observed. The probe offers practical means for studying GGT-associated biology in cells and tissues by one- as well as two-photon ratiometric imaging.


Assuntos
Membrana Celular/enzimologia , Corantes Fluorescentes/química , Fótons , gama-Glutamiltransferase/análise , Animais , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Imagem Óptica , gama-Glutamiltransferase/metabolismo
11.
Chem Commun (Camb) ; 56(72): 10556-10559, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32785337

RESUMO

The benzocoumarin dyes fluoresce negligibly in aqueous media but very strongly in cells, whereas representative conventional dyes display contrasting behaviour; the distinct emission behaviour of the fluorophores in organic solutions, in aqueous media, and in cell convinces the uniqueness of the cellular environment. The in cellulo superbright benzocoumarins also reveal an environment-insensitive emission behaviour, which is required for the reliable analysis via ratiometric imaging.


Assuntos
Cumarínicos/química , Fluorescência , Corantes Fluorescentes/química , Linhagem Celular Tumoral , Humanos , Soluções
12.
Chemistry ; 26(50): 11549-11557, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32297356

RESUMO

Photostable and near-infrared (NIR)-emitting organic fluorophores with large Stokes shifts are in great demand for long-term bioimaging at deeper depths with minimal autofluorescence and self-quenching. Herein, a new class of benzorhodamines and their analogues that are photostable and emit in the NIR region (up to 785 nm) with large Stokes shifts (>120 nm) is reported. The synthesis involves condensation of 7-alkylamino-2-naphthols with 2-[4-(dimethylamino)-2-hydroxybenzoyl]benzoic acid, which leads to bent-shaped benzorhodamines that emit orange fluorescence (≈600 nm); however, introduction of steric hindrance near the condensation site switched the regioselectivity, to provide a linear benzorhodamine system for the first time. The linear benzorhodamine derivatives provide bright fluorescence images in cells and in tissue. A carboxy-benzorhodamine was applied for photothermal therapy of cancer cells and xenograft cancer mice.


Assuntos
Neoplasias , Imagem Óptica , Terapia Fototérmica , Rodaminas , Animais , Compostos de Benzil , Corantes Fluorescentes , Camundongos , Neoplasias/diagnóstico por imagem , Neoplasias/terapia
13.
Chem Sci ; 11(33): 8901-8911, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34123144

RESUMO

Microscopic imaging aided with fluorescent probes has revolutionized our understanding of biological systems. Organic fluorophores and probes thus continue to evolve for bioimaging applications. Fluorophores such as cyanines and hemicyanines emit in the near-infrared (NIR) region and thus allow deeper imaging with minimal autofluorescence; however, they show limited photo- and chemo-stability, demanding new robust NIR fluorophores. Such photo- and chemo-stable NIR fluorophores, linear-shape π-extended rosol and rosamine analogues, are disclosed here which provide bright fluorescence images in cells as well as in tissues by confocal laser-scanning microscopy. Furthermore, they offer unique ratiometric imaging platforms for activatable probes with dual excitation and dual emission capability, as demonstrated with a 2,4-dinitrophenyl ether derivative of benzo-rosol.

14.
Food Chem ; 267: 149-156, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-29934149

RESUMO

We developed an on-packaging colorimetric sensor label that can detect the aldehyde emission of apples based on Methyl Red. The sensor label was constructed using printable inks on paper medium and relied on the change in basicity caused by the nucleophilic addition reaction between aldehyde and hydroxide via the Cannizzaro reaction. The sensor can be used to detect aldehyde in solution and vapor. Sensitivity and stability toward changes in humidity were achieved by altering the concentration of OH-. Under exposure to ripening apples, the label changed color from yellow to orange, and then to red. The degree of ripeness was estimated by a sensory test and texture analysis. The color change of sensor label had showed a similar tendency to the changes in the parameters of the sensory test, soluble solid content, and hardness. Therefore, the sensor label can be used for real time on-package ripeness monitoring of apples during their shelf life.


Assuntos
Aldeídos/análise , Colorimetria/métodos , Frutas/química , Compostos Azo , Cor , Análise de Alimentos , Umidade , Malus/química
15.
J Am Chem Soc ; 140(24): 7598-7604, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29809007

RESUMO

The use of chemical messengers to control multiple and often disparate downstream events is a hallmark of biological signaling. Here, we report a synthetic supramolecular construct that gives rise to bifurcated downstream events mediated by different stimulus-induced chemical messengers. The system in question consists of a supramolecular redox-ensemble made up of a tetrathiafulvalene (TTF)-based macrocycle, benzo-TTF-calix[4]pyrrole, and an electron deficient partner, 7,7,8,8-tetracyanoquinodimethane (TCNQ). Different tetraalkylammonium halide salts are used to trigger the reversible switching between neutral (No-ET), charge transfer (CT), and electron transfer (ET) states. The result is an effective tristate switch that provides chemical access to three different forms of TCNQ, namely, a released neutral, radical anionic (TCNQ•-), or bound CT forms. The ionically induced switching chemistry is linked separately through the neutral and radical anion TCNQ forms to two distinct follow-on reactions. These reactions consist, respectively, of styrene polymerization, which is triggered only in the "1" (TCNQ radical anion ET) state, and a cycloaddition-retroelectrocyclization (CA-RE) reaction, which is mediated only by the neutral TCNQ "0" (No-ET) state. Neither downstream reaction is promoted by the CT form, wherein the TCNQ is receptor bound. The three states that characterize this system, their interconversion, and the downstream reactions promoted by TCNQ•- and free TCNQ, respectively, have been characterized by single-crystal X-ray diffraction analyses and various solution phase spectroscopies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...