Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Chem Commun (Camb) ; 60(47): 6019-6022, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38774998

RESUMO

In this study, a new type of gold nano-bipyramids@CuZn bimetallic organic framework (AuNBPs@CuZn MOF) nanozyme with high peroxidase (POD)-like activity and surface enhanced Raman scattering (SERS) activity was constructed with a special core-shell structure, which can catalyze the oxidation of TMB (colourless and Raman-inactive) into ox-TMB (blue and Raman-active). An AuNBPs@CuZn MOF-enabling universal SERS and colorimetric dual-model bioassay was thus developed for biomolecules with excellent performance, and has promising application prospects in the biosensing fields.


Assuntos
Colorimetria , Cobre , Ouro , Estruturas Metalorgânicas , Análise Espectral Raman , Ouro/química , Colorimetria/métodos , Análise Espectral Raman/métodos , Estruturas Metalorgânicas/química , Cobre/química , Nanopartículas Metálicas/química , Oxirredução , Benzidinas/química , Bioensaio , Propriedades de Superfície
2.
Heliyon ; 10(9): e30475, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38726124

RESUMO

KRAS is a commonly mutated oncogene in human gastric cancer and is often associated with drug resistance and poor prognosis. Co-clinical trial of combined MEK-CDK4/6 inhibition in KRAS mutated cancers demonstrated therapeutic efficacy in patient-derived xenografts and safety in patients. Here, present research focuses on targeting CDK4/6 and MEK synergistically block the proliferation of KRAS-mutated gastric cancer cells in vitro and in vivo and induced autophagy through the AMPK/mTOR pathway. Furthermore, autophagy inhibitor combined with targeting CDK4/6 and MEK therapy had significant antitumor effects on KRAS mutant gastric cancer cells. Clinical trials are needed to determine the mechanism behind this finding and its clinical utility. In conclusion, our results demonstrate autophagy inhibitor combined targeting MEK and CDK4/6 that concurrently block multiple metabolic processes may be an effective therapeutic approach for gastric cancer.

3.
J Toxicol Environ Health A ; 87(10): 448-456, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38557302

RESUMO

Cerebral ischemia-reperfusion injury (CIRI) occurs frequently clinically as a complication following cardiovascular resuscitation resulting in neuronal damage specifically to the hippocampal CA1 region with consequent cognitive impairment. Apoptosis and oxidative stress were proposed as major risk factors associated with CIRI development. Previously, glycosides obtained from Cistanche deserticola (CGs) were shown to play a key role in counteracting CIRI; however, the underlying mechanisms remain to be determined. This study aimed to investigate the neuroprotective effect of CGs on subsequent CIRI in rats. The model of CIRI was established for 2 hr and reperfusion for 24 hr by middle cerebral artery occlusion (MCAO) model. The MCAO rats were used to measure the antioxidant and anti-apoptotic effects of CGs on CIRI. Neurological function was evaluated by the Longa neurological function score test. 2,3,5-Triphenyltetrazolium chloride (TTC) staining was used to detect the area of cerebral infarction. Nissl staining was employed to observe neuronal morphology. TUNEL staining was used to detect neuronal apoptosis, while Western blot determined protein expression levels of factors for apoptosis-related and PI3K/AKT/Nrf2 signaling pathway. Data demonstrated that CGs treatment improved behavioral performance, brain injury, and enhanced antioxidant and anti-apoptosis in CIRI rats. In addition, CGs induced activation of PI3K/AKT/Nrf2 signaling pathway accompanied by inhibition of the expression of apoptosis-related factors. Evidence indicates that CGs amelioration of CIRI involves activation of the PI3K/AKT/Nrf2 signaling pathway associated with increased cellular viability suggesting these glycosides may be considered as an alternative compound for CIRI treatment.


Assuntos
Isquemia Encefálica , Cistanche , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Ratos , Animais , Ratos Sprague-Dawley , Proteínas Proto-Oncogênicas c-akt/metabolismo , Antioxidantes/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Fosfatidilinositol 3-Quinases/farmacologia , Glicosídeos/farmacologia , Glicosídeos/uso terapêutico , Fator 2 Relacionado a NF-E2/farmacologia , Apoptose , Isquemia Encefálica/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Fármacos Neuroprotetores/farmacologia
4.
J Toxicol Environ Health A ; 87(10): 436-447, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38557424

RESUMO

One of the main pathological features noted in Alzheimer's disease (AD) is the presence of plagues of aggregated ß-amyloid (Aß1-42)-peptides. Excess deposition of amyloid-ß oligomers (AßO) are known to promote neuroinflammation. Sequentially, following neuroinflammation astrocytes become activated with cellular characteristics to initiate activated astrocytes. The purpose of this study was to determine whether total flavonoids derived from Dracocephalum moldavica L. (TFDM) inhibited Aß1-42-induced damage attributed to activated C8-D1A astrocytes. Western blotting and ELISA were used to determine the expression of glial fibrillary acidic protein (GFAP), and complement C3 to establish the activation status of astrocytes following induction from exposure to Aß1-42. Data demonstrated that stimulation of C8-D1A astrocytes by treatment with 40 µM Aß1-42 for 24 hr produced significant elevation in protein expression and protein levels of acidic protein (GFAP) and complement C3 accompanied by increased expression and levels of inflammatory cytokines. Treatment with TFDM or the clinically employed drug donepezil in AD therapy reduced production of inflammatory cytokines, and toxicity initiated following activation of C8-D1A astrocytes following exposure to Aß1-42. Therefore, TFDM similar to donepezil inhibited inflammatory secretion in reactive astrocytes, suggesting that TFDM may be considered as a potential compound to be utilized in AD therapy.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Lamiaceae , Humanos , Peptídeos beta-Amiloides/farmacologia , Doença de Alzheimer/tratamento farmacológico , Flavonoides/farmacologia , Complemento C3/metabolismo , Complemento C3/farmacologia , Complemento C3/uso terapêutico , Doenças Neuroinflamatórias , Astrócitos/metabolismo , Donepezila/metabolismo , Donepezila/farmacologia , Donepezila/uso terapêutico , Citocinas/metabolismo , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/toxicidade
5.
J Toxicol Environ Health A ; 87(11): 471-479, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38590254

RESUMO

Cannabidiol (CBD), a natural component extracted from Cannabis sativa L. exerts neuroprotective, antioxidant, and anti-inflammatory effects in Alzheimer's disease (AD), a disease characterized by impaired cognition and accumulation of amyloid-B peptides (Aß). Interactions between the gut and central nervous system (microbiota-gut-brain axis) play a critical role in the pathogenesis of neurodegenerative disorder AD. At present investigations into the mechanisms underlying the neuroprotective action of CBD in AD are not conclusive. The aim of this study was thus to examine the influence of CBD on cognition and involvement of the microbiota-gut-brain axis using a senescence-accelerated mouse prone 8 (SAMP8) model. Data demonstrated that administration of CBD to SAMP8 mice improved cognitive function as evidenced from the Morris water maze test and increased hippocampal activated microglia shift from M1 to M2. In addition, CBD elevated levels of Bacteriodetes associated with a fall in Firmicutes providing morphologically a protective intestinal barrier which subsequently reduced leakage of intestinal toxic metabolites. Further, CBD was found to reduce the levels of hippocampal and colon epithelial cells lipopolysaccharide (LPS), known to be increased in AD leading to impaired gastrointestinal motility, thereby promoting neuroinflammation and subsequent neuronal death. Our findings demonstrated that CBD may be considered a beneficial therapeutic drug to counteract AD-mediated cognitive impairment and restore gut microbial functions associated with the observed neuroprotective mechanisms.


Assuntos
Doença de Alzheimer , Canabidiol , Disfunção Cognitiva , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Eixo Encéfalo-Intestino , Cognição , Disfunção Cognitiva/tratamento farmacológico , Modelos Animais de Doenças
6.
Chem Commun (Camb) ; 60(8): 996-999, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38168820

RESUMO

Although some simple and rapid colorimetric methods have been developed to detect organophosphorus pesticides (OPs), the difficult extraction and easy denaturation of acetylcholinesterase (AChE) are still drawbacks needing to be overcome. Here, we propose a MOF nanozyme-mediated AChE-free colorimetric strategy for the direct detection of OPs. In the presence of OPs (pirimiphos-methyl as a model), the intense blue of oxidized 3,3',5,5'-tetramethylbenzidine (TMB) becomes light due to the quenching effect of OPs towards hydroxyl radicals (˙OH) that are generated by the decomposition of H2O2 catalyzed by the Cu4Co6 ZIF nanozyme with excellent peroxidase (POD)-like activity. The developed colorimetric sensor exhibits assay performance and offers a universal and promising analysis strategy for detecting OPs in practical samples.


Assuntos
Técnicas Biossensoriais , Praguicidas , Praguicidas/análise , Acetilcolinesterase/análise , Compostos Organofosforados/análise , Colorimetria/métodos , Peróxido de Hidrogênio , Técnicas Biossensoriais/métodos
8.
Anal Chem ; 96(3): 1345-1353, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38190289

RESUMO

Designing a metal-organic framework (MOF)-derived nanozyme with highly dispersed active sites and high catalytic activity as well as robust structure for colorimetric biosensing of diverse biomolecules remains a substantial challenge. Here, an MOF-derived highly dispersed and pure α-cobalt confined in a nitrogen-doped carbon nanofiber (α-Co@NCNF) nanozyme with superior glucose oxidase (GOD)- and peroxidase (POD)-like activities was constructed for colorimetric assay of multiple biomolecules. Specifically, the α-Co@NCNF nanozyme was synthesized, utilizing in situ electrospinning Co-MOFs into polyacrylonitrile nanofiber (PAN) followed by a pyrolysis process. Taking advantage of the in situ electrospinning strategy, the α-Co nanoparticles were confined in continuous porous NCNF to restrict the growth and prevent the aggregation and oxidation during the pyrolysis process. The resulting special structure considerably improved the enzyme-like performance. A series of experiments validate that the enzyme-like activity of the α-Co@NCNF nanozyme was superior to that of Co@CoO@NCNF (derivatives from Co-MOFs grown on the surface of PAN nanofiber) and nature enzymes. Furthermore, α-Co@NCNF nanozyme-based colorimetric biosensing was developed for monitoring glucose, hydrogen peroxide (H2O2), and glutathione (GSH) and the corresponding linear ranges are 0.1-50 and 50-900 µM and 5-55 and 0.1-20 µM accompanied by the corresponding low detection of 0.03, 1.66, and 0.03 µM. The proposed method for the construction of α-Co@NCNF nanozyme with dual enzyme-like properties provides a new insight for designing novel nanozymes and has prospects for application in colorimetric biosensing.


Assuntos
Estruturas Metalorgânicas , Nanofibras , Peróxido de Hidrogênio , Estruturas Metalorgânicas/química , Carbono/química , Nitrogênio/química , Cobalto , Antioxidantes , Colorimetria/métodos
9.
Anal Chem ; 95(39): 14516-14520, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37672313

RESUMO

Although nanozymes with intrinsic enzyme-like characteristics have aroused great interest in the biosensing field, the challenge is to keep high enzyme-like activity of the nanozyme after the modification of biomolecules onto nanozymes. Herein, a functional zonation strategy of a heterodimer nanozyme was proposed to tackle the challenge and further construct a multiple chemiluminescence (CL) imaging immunoassay. Here Fe3O4-Au as a heterodimer nanozyme model was divided into two zones, in which Fe3O4 nanoparticles (NPs) were regarded as a nanozyme zone and AuNPs were defined as an antibody immobilization zone. A signal amplification probe (Fe3O4-Au-Ab2) was prepared by modifying the secondary antibody (Ab2) on AuNPs of the Fe3O4-Au heterodimer owing to the Au-S bond. The exposed Fe3O4 of the Fe3O4-Au-Ab2 probe shows very high peroxidase-like activity and can efficiently catalyze H2O2-luminol to produce strong CL imaging signals for multiple antigens detection. Using chicken interleukin-4 (ChIL-4) and chicken gamma interferon (ChIFN-γ) as models, the proposed CL imaging immunoassay shows wide linear ranges (0.005-0.10 ng/mL for both ChIL-4 and ChIFN-γ) and low detection limits (0.58 pg/mL for ChIL-4, 0.47 pg/mL for ChIFN-γ) with the characteristics of high sensitivity, high specificity, and good stability. This work provides a promising functional zonation concept for nanozymes to construct new types of nanozyme probes for immunoassay of multiple biomolecules.

10.
Chem Commun (Camb) ; 59(53): 8294-8297, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37318544

RESUMO

Herein, a "two-in-one" Ag@Au core-shell nanozyme probe inducing double-signal amplification has been developed to significantly elevate the sensitivity of SPR sensors via sandwich immunoassay. The Ag@Au core-shell nanozyme with intrinsic peroxide-like activity was demonstrated to catalyze a polymerization reaction leading to formation of polyaniline, allowing further improvement of detection performance of SPR immunosensor. The method demonstrated here offers a universal strategy for enhanced SPR detection and further expands the application of nanozymes.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Ressonância de Plasmônio de Superfície/métodos , Técnicas Biossensoriais/métodos , Imunoensaio/métodos , Catálise , Peróxidos , Ouro
14.
Mikrochim Acta ; 190(1): 13, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36478275

RESUMO

An ultrasensitive multiplex surface-enhanced Raman scattering (SERS) immunoassay was developed using porous Au-Ag alloy nanoparticles (p-AuAg NPs) as Raman signal amplification probe coupling with encoded photonic crystal microsphere. p-AuAg NPs were synthesized and modified with the second antibody (Ab2) and Raman tag (mercaptobenzoic acid, MBA) to prepare a Raman signal-amplified probe. The high porosity of the p-AuAg NPs enables significant coupling of the localized surface plasmon resonance and thus abundant inherent hotspots for Raman signal enhancement. 3D-ordered silver nanoparticles-coated silica photonic crystal beads (Ag/SPCBs) were prepared as encoded SERS substrate for multiplex detection using their reflection peaks. The signal-amplified probe was used for multiplex detection of tumor markers carcinoembryonic antigen (CEA) and alpha fetoprotein (AFP). The wide linear ranges of 10-7-103 ng/mL for CEA and 10-4-103 ng/mL for AFP with detection limits of 1.22 × 10-8 ng/mL and 2.47 × 10-5 ng/mL for CEA and AFP at a signal-to-noise ratio of 3 were obtained. The proposed multiplex SERS immunoassay method displays ultrahigh sensitivity, wide linear range, and excellent specificity, which can be successfully applied to measure clinical serum samples with satisfactory results. The research provides a novel SERS signal enhancement strategy for the multiplex bioassay.


Assuntos
Ligas , Nanopartículas Metálicas , Prata
15.
Front Pharmacol ; 13: 1037563, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386194

RESUMO

Amygdalus mongolica oil is rich in unsaturated fatty acids such as inoleic acid (47.11%) and oleic acid (23.81%). Our research demonstrates that it exerts a protective effect on rat models of pulmonary fibrosis, however, little is known regarding the underlying mechanism of action. This study aimed to characterize the therapeutic mechanism of action of A. mongolica oil on bleomycin-induced pulmonary fibrosis in rats. A. mongolica oil appears to regulate the levels of potential key serum biomarkers which include tetrahydrobiopterin, L-serine, citrulline and estradiol to participate in folate biosynthesis, glycine, serine and threonine metabolism, arginine biosynthesis and steroid hormone biosynthesis. And it also enriched intestinal microbial abundance, homogeneity and modulated the abundance of Duncaniell, Desulfovibrio, Peptococcaceae_unclassified, Dubosiella, Tyzzerella, Lachnospiraceae_NK4A136_group, Lactobacillus, Clostridiales_unclassified to exert a protective effect against pulmonary fibrosis. A. mongolica oil appears to confer protective effects against pulmonary fibrosis by affecting the level of pulmonary fibrosis metabolites and the abundance of related intestinal flora through multiple targets, as evidenced by our untargeted LC-MS/MS metabonomics evaluation and 16S rDNA sequencing technology.

16.
Analyst ; 147(18): 4049-4054, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-35938689

RESUMO

In this research, dual-strategy biosensing of glucose was proposed based on multifunctional CuWO4 nanoparticles (CuWO4 NPs), which were prepared for the application of electrochemical and colorimetric sensing of glucose. CuWO4 NPs show large specific surface area and good conductivity as well as excellent peroxidase-like activity. A sensitive and selective electrochemical glucose biosensor was fabricated with the immobilization of glucose oxidase (GOx) on a CuWO4 NP modified electrode for enhancing the direct electron transfer behavior. A wide linear range of 0.005-1.8 mM with a low detection limit of 1.5 µM and a high sensitivity of 28.02 mA M-1 cm-2 were achieved by using the electrochemical biosensor. Meanwhile, a colorimetric and visual glucose biosensor was constructed based on the GOx/CuWO4 cascade nanozyme, which shows a linear range of 0.05-1.0 mM with excellent selectivity. CuWO4 NPs as a promising matrix open up a dual-strategy biosensor for sensitive and selective detection of glucose.


Assuntos
Técnicas Biossensoriais , Nanopartículas , Técnicas Eletroquímicas , Eletrodos , Enzimas Imobilizadas , Glucose , Glucose Oxidase
18.
Mol Omics ; 18(6): 520-533, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35551348

RESUMO

Renal fibrosis (RF) is a chronic and fatal disease related to the gradual deterioration of kidney function. MicroRNAs (miRNAs) play a key role in cellular functions and several of them related to the pathogenesis of RF have been identified, although the underlying mechanisms are unclear. In order to explore the miRNAs involved in RF progression, we established a model in rats by the unilateral ureteral ligation method. The animals were randomly divided into the control group, and the 2 week, 4 week and 6 week model groups. The indices of renal function were measured using routine biochemical assays. The differentially expressed miRNAs (DE-miRNAs) between the sham-operated and modelled rats were screened, and their putative target genes were identified using the miRanda software and functionally annotated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The expression of transforming growth factor ß1 (TGF-ß1), Smad3 and Smad7 was confirmed by RT-PCR. Compared to the sham-operated group, the model groups showed a decrease in SOD activity, along with the increased renal coefficient, and higher MDA, HYP, Scr, BUN and ALB levels. In addition, TGF-ß1, Smad3 and Smad7 were also upregulated in the RF groups. We identified 274 known and 11 novel DE-miRNAs in the 2 week, 114 known and 6 novel DE-miRNAs in the 4 week, and 41 known and 1 novel DE-miRNAs in the 6 week model groups. The putative target genes of these DE-miRNAs were enriched in metabolic processes, apoptosis, pyrimidine metabolism, and TNF and VEGF signalling pathways. Based on our findings, we surmise that miR-146a-3p, miR-148a-3p, miR-130a-5p, miR-362-3p and miR-122-5p are likely to be involved in the occurrence and development of RF, and miR-122-5p may play an inhibitory role. The underlying mechanisms need further investigation.


Assuntos
Nefropatias , MicroRNAs , Animais , Fibrose , Ontologia Genética , Nefropatias/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Ratos , Fator de Crescimento Transformador beta1/genética
19.
Analyst ; 147(3): 430-435, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35037669

RESUMO

Efficient urchin-like Pt nanoparticles@Bi2S3 (PtNPs@Bi2S3) composite materials were prepared by a composite soft template synthesis of urchin-like Bi2S3 and then the microwave-assisted growth of PtNPs onto the Bi2S3 nanostructure. For the first time, an accurate electrochemical glucose biosensor was fabricated via immobilizing glucose oxidase (GOx) on PtNPs@Bi2S3. The PtNPs@Bi2S3 composite was investigated via scanning electron microscopy, electrochemical impedance spectroscopy, Fourier transform infrared spectroscopy, and cyclic voltammetry. The PtNPs@Bi2S3 composite provides a large surface area to load a large number of enzyme molecules, which maintains the biological activity. PtNPs loaded on Bi2S3 enhanced the conductivity and improved the direct electron transfer of the proposed biosensor with the synergistic effect. The fabricated electrochemical biosensor possesses high sensitivity, and a wide linear range from 0.003 mM to 0.1 mM and 0.1 mM to 1.9 mM. Moreover, the biosensor has outstanding stability, superior selectivity and good repeatability, which can be utilized to monitor the glucose level in practical human serum. The PtNPs@Bi2S3 composite supplies a special matrix for immobilizing proteins and potential for establishing other effective biosensors.


Assuntos
Técnicas Biossensoriais , Espectroscopia Dielétrica , Técnicas Eletroquímicas , Eletrodos , Enzimas Imobilizadas , Glucose , Glucose Oxidase , Humanos , Limite de Detecção
20.
Mikrochim Acta ; 189(1): 5, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34855013

RESUMO

An ultrasensitive label-free electrochemical immunosensor was fabricated for quantitative detection of Lactobacillus rhamnosus GG (LGG). The N/O co-doped three-dimensional hierarchical porous graphitic (THPG) carbon was synthesized by a one-step synthesis of polyaniline hydrogel, and followed by simple carbonization and chemical activation procedures. Because of the unique structure design, the obtained THPG carbon networks possess an ultra-large specific surface area of 4859 m2 g-1 along with a class of highly graphitic carbons. The results offer an enormous surface area and excellent electrical conductivity for label-free electrochemical immunosensing of probiotic L. rhamnosus strain. Under optimal conditions, the immunosensor showed a good linear relationship between peak current and concentration of LGG (R2 = 0.9976), with a detection limit of 2 CFU mL-1. Furthermore, this label-free immunosensor also shows good specificity, long-term stability, and reliability, and could be applied to detect probiotic LGG in dairy products and drinks with satisfactory results. The present protocol was shown to be quite promising for practical screening and functional evaluation of probiotic products containing LGG. A ultrasensitive label-free electrochemical immunosensor based on THPG carbon was fabricated for detection of Lactobacillus rhamnosus GG.


Assuntos
Carga Bacteriana/métodos , Grafite/química , Imunoensaio/métodos , Lacticaseibacillus rhamnosus/isolamento & purificação , Probióticos/análise , Anticorpos Imobilizados/imunologia , Laticínios/análise , Laticínios/microbiologia , Técnicas Eletroquímicas , Lacticaseibacillus rhamnosus/imunologia , Limite de Detecção , Nitrogênio/química , Oxigênio/química , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...