Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Braz J Med Biol Res ; 55: e12324, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36102418

RESUMO

Recombinant human peroxiredoxin-5 (hPRDX5), isolated from anti-cancer bioactive peptide (ACBPs), shows a homology of 89% with goat peroxiredoxin-5 (gPRDX5) and is reported to display anti-tumor activity in vivo. Herein, we explored the effect of hPRDX5 and the responsible mechanism in treating pancreatic cancer. Tumor-bearing mice were randomly divided into normal PBS group and treatment group (n=5; 10 mg/kg hPRDX5). Flow cytometry was employed to examine lymphocytes, myeloid-derived suppressor cell subsets, and the function proteins of natural killer (NK) cells in peripheral blood, spleen, and tumor tissues of mice. Western blot was used to measure the protein expressions of the key nodes in TLR4-MAPK-NF-κB signaling pathway. The rate of tumor suppression was 57.6% at a 10 mg/kg dose in orthotopic transplanted tumor mice. Moreover, the population of CD3+CD4+T cells, NK cells, and CD3+CD8+T cells was significantly increased in the tumor tissue of the hPRDX5 group, while the proportion of granulocytic-myeloid-derived suppressor cells decreased slightly. In addition, after treatment with hPRDX5, the percentage of NK cells in blood increased more than 4-fold. Our findings indicated that hPRDX5 effectively suppressed pancreatic cancer possibly via the TLR4-MAPK-NF-κB signaling cascade; hence hPRDX5 could be a prospective immunotherapy candidate for treating pancreatic cancer.


Assuntos
NF-kappa B , Neoplasias Pancreáticas , Animais , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Peroxirredoxinas , Estudos Prospectivos , Receptor 4 Toll-Like , Neoplasias Pancreáticas
2.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;55: e12324, 2022. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1403907

RESUMO

Recombinant human peroxiredoxin-5 (hPRDX5), isolated from anti-cancer bioactive peptide (ACBPs), shows a homology of 89% with goat peroxiredoxin-5 (gPRDX5) and is reported to display anti-tumor activity in vivo. Herein, we explored the effect of hPRDX5 and the responsible mechanism in treating pancreatic cancer. Tumor-bearing mice were randomly divided into normal PBS group and treatment group (n=5; 10 mg/kg hPRDX5). Flow cytometry was employed to examine lymphocytes, myeloid-derived suppressor cell subsets, and the function proteins of natural killer (NK) cells in peripheral blood, spleen, and tumor tissues of mice. Western blot was used to measure the protein expressions of the key nodes in TLR4-MAPK-NF-κB signaling pathway. The rate of tumor suppression was 57.6% at a 10 mg/kg dose in orthotopic transplanted tumor mice. Moreover, the population of CD3+CD4+T cells, NK cells, and CD3+CD8+T cells was significantly increased in the tumor tissue of the hPRDX5 group, while the proportion of granulocytic-myeloid-derived suppressor cells decreased slightly. In addition, after treatment with hPRDX5, the percentage of NK cells in blood increased more than 4-fold. Our findings indicated that hPRDX5 effectively suppressed pancreatic cancer possibly via the TLR4-MAPK-NF-κB signaling cascade; hence hPRDX5 could be a prospective immunotherapy candidate for treating pancreatic cancer.

3.
Electron. j. biotechnol ; Electron. j. biotechnol;50: 10-15, Mar. 2021. ilus, graf, tab
Artigo em Inglês | LILACS | ID: biblio-1292308

RESUMO

BACKGROUND: LXYL-P1-2 is the first reported glycoside hydrolase that can catalyze the transformation of 7-b-xylosyl-10-deacetyltaxol (XDT) to 10-deacetyltaxol (DT) by removing the D-xylosyl group at the C7 position. Successful synthesis of paclitaxel by one-pot method combining the LXYL-P1-2 and 10- deacetylbaccatin III-10-b-O-acetyltransferase (DBAT) using XDT as a precursor, making LXYL-P1-2 a highly promising enzyme for the industrial production of paclitaxel. The aim of this study was to investigate the catalytic potential of LXYL-P1-2 stabilized on magnetic nanoparticles, the surface of which was modified by Ni2+-immobilized cross-linked Fe3O4@Histidine. RESULTS: The diameter of matrix was 20­40 nm. The Km value of the immobilized LXYL-P1-2 catalyzing XDT (0.145 mM) was lower than that of the free enzyme (0.452 mM), and the kcat/Km value of immobilized enzyme (12.952 mM s 1 ) was higher than the free form (8.622 mM s 1 ). The immobilized form maintained 50% of its original activity after 15 cycles of reuse. In addition, the stability of immobilized LXYL-P1-2, maintained 84.67% of its initial activity, improved in comparison with free form after 30 d storage at 4 C. CONCLUSIONS: This investigation not only provides an effective procedure for biocatalytic production of DT, but also gives an insight into the application of magnetic material immobilization technology.


Assuntos
Paclitaxel/biossíntese , Glicosídeo Hidrolases/metabolismo , Cinética , Enzimas Imobilizadas , Nanopartículas , Imãs
4.
Electron. j. biotechnol ; Electron. j. biotechnol;19(3): 43-48, May 2016. ilus
Artigo em Inglês | LILACS | ID: lil-787006

RESUMO

Background: D-Hydroxyphenylglycine is considered to be an important chiral molecular building-block of antibiotic reagents such as pesticides, and β-lactam antibiotics. The process of its production is catalyzed by D-hydantoinase and D-carbamoylase in a two-step enzyme reaction. How to enhance the catalytic potential of the two enzymes is valuable for industrial application. In this investigation, an Escherichia coli strain genetically engineered with D-hydantoinase was immobilized by calcium alginate with certain adjuncts to evaluate the optimal condition for the biosynthesis of D-carbamoyl-p-hydroxyphenylglycine (D-CpHPG), the compound further be converted to D-hydroxyphenylglycine (D-HPG) by carbamoylase. Results: The optimal medium to produce D-CpHPG by whole-cell immobilization was a modified Luria-Bertani (LB) added with 3.0% (W/V) alginate, 1.5% (W/V) diatomite, 0.05% (W/V) CaCl2 and 1.00 mM MnCl2.The optimized diameter of immobilized beads for the whole-cell biosynthesis here was 2.60 mm. The maximized production rates of D-CpHPG were up to 76%, and the immobilized beads could be reused for 12 batches. Conclusions: This investigation not only provides an effective procedure for biological production of D-CpHPG, but gives an insight into the whole-cell immobilization technology.


Assuntos
Escherichia coli , Amidoidrolases , Glicina/análogos & derivados , Células Imobilizadas , Glicina/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA