Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847362

RESUMO

Prussian blue analogue (PBA)/metal-organic frameworks (MOFs) are multifunctional precursors for the synthesis of metal/metal compounds, carbon, and their derived composites (P/MDCs) in chemical, medical, energy, and other applications. P/MDCs combine the advantages of both the high specific surface area of PBA/MOF and the electronic conductivity of metal compound/carbon. Although the calcination under different atmospheres has been extensively studied, the transformation mechanism of PBA/MOF under hydrothermal conditions remains unclear. The qualitative preparation of P/MDCs in hydrothermal conditions remains a challenge. Here, we select PBA to construct a machine-learning model and measure its hydrothermal phase diagram. The architecture-activity relationship of substances among nine parameters was analyzed for the hydrothermal phase transformation of PBA. Excitingly, we established a universal qualitative model to accurately fabricate 31 PBA derivates. Additionally, we performed three-dimensional reconstructed transmission electron microscopy, X-ray absorption fine structure spectroscopy, ultraviolet photoelectron spectroscopy, in situ X-ray powder diffraction, and theoretical calculation to analyze the advantages of hydrothermal derivatives in the oxygen evolution reaction and clarify their reaction mechanisms. We uncover the unified principles of the hydrothermal phase transformation of PBA, and we expect to guide the design for a wide range of composites.

2.
Biochem Genet ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607540

RESUMO

There has been interested in the microRNAs' roles in pancreatic cancer (PC) cell biology, particularly in regulating pathways related to tumorigenesis. The study aimed to explore the hub miRNAs in PC and underlying mechanisms by bioinformatics and fundamental experiments. RNA datasets collected from the Gene Expression Omnibus were analysed to find out differentially expressed RNAs (DERNAs). The miRNA-mRNA and protein-protein interaction (PPI) networks were built. The clinicopathological features and expressions of hub miRNAs and hub mRNAs were explored. Dual-luciferase reporter gene assay was performed to assess the interaction between microRNA and target gene. RT-qPCR and western blot were employed to explore RNA expression. The roles of RNA were detected by CCK-8 test, wound healing, transwell, and flow cytometry experiment. We verified 40 DEmiRNAs and 1613 DEmRNAs, then detected a total of 69 final functional mRNAs (FmRNAs) and 23 DEmiRNAs. In the miRNA-mRNA networks, microRNA-130b (miR-130b) was the hub RNA with highest degrees. Clinical analysis revealed that miR-130b was considerably lower expressed in cancerous tissues than in healthy ones, and patients with higher-expressed miR-130b had a better prognosis. Mechanically, miR-130b directly targeted MET in PC cells. Cell functional experiments verified that miR-130b suppressed cell proliferation, migration, promoted apoptosis, and inhibited the PI3K/Akt pathway by targeting MET in PC cells. Our findings illustrated the specific molecular mechanism of miR-130b regulating PC progress. The miR-130b/MET axis may be an alternative target in the therapeutic intervention of PC and provide an opportunity to deepen our understanding of the pathogenesis of PC.

3.
Fish Shellfish Immunol ; 149: 109546, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38614412

RESUMO

Histones and their N-terminal or C-terminal derived peptides have been studied in vertebrates and presented as potential antimicrobial agents playing important roles in the innate immune defenses. Although histones and their derived peptides had been reported as components of innate immunity in invertebrates, the knowledge about the histone derived antimicrobial peptides (HDAPs) in invertebrates are still limited. Using a peptidomic technique, a set of peptide fragments derived from the histones was identified in this study from the serum of microbes challenged Mytilus coruscus. Among the 85 identified histone-derived-peptides with high confidence, 5 HDAPs were chemically synthesized and the antimicrobial activities were verified, showing strong growth inhibition against Gram-positive bacteria, Gram-negative bacteria, and fungus. The gene expression level of the precursor histones matched by representative HDAPs were further tested using q-PCR, and the results showed a significant upregulation of the histone gene expression levels in hemocytes, gill, and mantle of the mussel after immune stress. In addition, three identified HDAPs were selected for preparation of specific antibodies, and the corresponding histones and their derived C-terminal fragments were detected by Western blotting in the blood cell and serum of immune challenged mussel, respectively, indicating the existence of HDAPs in M. coruscus. Our findings revealed the immune function of histones in Mytilus, and confirmed the existence of HDAPs in the mussel. The identified Mytilus HDAPs represent a new source of immune effector with antimicrobial function in the innate immune system, and thus provide promising candidates for the treatment of microbial infections in aquaculture and medicine.


Assuntos
Peptídeos Antimicrobianos , Histonas , Imunidade Inata , Mytilus , Animais , Mytilus/imunologia , Mytilus/genética , Histonas/imunologia , Histonas/genética , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/genética , Peptídeos Antimicrobianos/química , Imunidade Inata/genética , Bactérias Gram-Negativas/fisiologia , Bactérias Gram-Negativas/efeitos dos fármacos
4.
Sci Total Environ ; 921: 170624, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38325458

RESUMO

Phosphorus (P) is a primary pollutant that builds-up on urban road surfaces. Understanding the fraction and load characteristics of P, as well as their relationship with urban factors, is helpful for assessing the ecological risk of urban receiving water bodies. This study presents the characteristics of build-up loads of P fractions in road-deposited sediments (RDS) in Guangzhou, China, analyzes their correlation with three urban factors (road, traffic, and land-use area), and then estimates the exceedance probability of P in stormwater runoff over the past 10 years. The results showed that detrital apatite phosphorus (De-P) performed the highest build-up load on urban road surfaces, followed by apatite phosphorus (Ca-P), iron-bound phosphorus (Fe-P), exchangeable phosphorus (Ex-P), aluminum-bound phosphorus (Al-P), organophosphorus (POP), dissolved inorganic phosphorus (DIP), occluded phosphorus (Oc-P), and dissolved organic phosphorus (DOP). Depression depth, road materials, and land-use fractions affected the P fractions. The P in the RDS may have originated from three distinct sources: road background, domestic waste, and untreated wastewater discharge. In the most recent 10 years, the event mean concentrations of total P in the RDS have had a 30 % probability of exceeding 0.4 mg L-1, which indicates a serious threat of P to receiving water bodies. The outcomes of this study are expected to provide valuable guidance for elucidating the principal categories of urban non-point source P pollution and enhancing the ecological health of urban water environments.

5.
J Cancer ; 15(6): 1583-1592, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38370369

RESUMO

Background: We conducted an assessment of 2'-O-methylated (2'OMe) microRNAs (miRNAs) present in the circulation of individuals suffering from pancreatic ductal adenocarcinoma (PDAC). Subsequently, we devised a set of circulating 2'OMe miRNAs that can be utilized for the screening of PDAC patients within a group at increased risk. Methods: A four-step, multicenter research was carried out. The initial screening phase involved analyzing 10 samples from patients with pancreatic ductal adenocarcinoma (PDAC) and 10 specimens from donors who were in good health. RNA sequencing was performed on these specimens after pre-treatment via NaIO4. The instruction and confirmation phases involved the use of 2'OMe miRNA profiling and multivariate analysis to examine applicant 2'OMe miRNAs in a sample of 248 individuals. In a prospective registration population of 135 individuals, a clinical screening panel was created and confirmed. The performance of individual 2'OMe miRNAs or the biomarker panel was evaluated using the receiver operating characteristic curve. Results: Abnormal circulating 2'OMe miRNAs were detected in individuals suspected of pancreatic ductal adenocarcinoma (PDAC). A circulating panel of 3-2'OMe miRNAs, namely miR-28-3p, miR-143-3p, and miR-151a-3p, was subsequently identified. These miRNAs continually exhibited up-regulation in plasma samples of patients with pancreatic ductal adenocarcinoma (PDAC). The panel's area under the curve (AUC) was 1.0 in the experimental group and 0.928 in the verification cohort when comparing PDAC patients in all clinical stages to normal controls. During the application study, both the specificity and sensitivity were found to be 75.00% and 89.72% respectively, with an AUC value of 0.868. In the comparison between early-stage (I-II) PDAC patients and control subjects, the panel demonstrated an AUC of 1.0 in the training cohort and 0.924 in the validation population. In the application group the AUC was 0.810 (95% CI 0.729-0.876) in comparison to the high-risk symptomatic group. Conclusion: Abnormal circulating 2'OMe miRNAs were detected in individuals with pancreatic ductal adenocarcinoma (PDAC). Consequently, we devised a 2'OMe miRNA biological marker panel that holds promise as an initial detection tool for PDAC.

6.
Environ Sci Technol ; 58(5): 2542-2553, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38262936

RESUMO

Defluorination is essential to eliminate the antibiotic resistance and detrimental effects of florfenicol (C12H14Cl2FNO4S, FF), which is achievable by sulfidated nanoscale zerovalent iron (S-nZVI), yet a comprehensive understanding of the mechanism is lacking. Herein, we used experimental data and density functional theory calculations to demonstrate four dechlorination-promoted defluorination pathways of FF, depending on S-nZVI or not. FF was defluorinated in a rapid and then slow but continuous manner, accompanying a consecutive dechlorination to deschloro (dFF) and dideschloro FF (ddFF). Unexpectedly, the predominant defluorination occurs by spontaneous hydrolysis of ddFF to form the hydrolyzed byproduct (HO-ddFF), i.e., independent of S-nZVI, which is initiated by intramolecular attack from carbonyl O to alkyl F and is thus limited for FF and dFF owing to the diminished nucleophilicity by electron-withdrawing Cl. The removal of Cl also makes the reductive defluorination of ddFF by S-nZVI amenable. The other two minor but more rapid defluorination pathways occur in synergy with the dechlorination of FF and dFF, which are mediated by the reactive carbanion intermediates and generate HO-dFF and HO-ddFF, respectively. The reliability of these dechlorination-facilitated defluorination pathways was verified by the consistency of theoretical calculations with experimental data, providing valuable insights into the degradation of fluorinated contaminants.


Assuntos
Tianfenicol/análogos & derivados , Tricloroetileno , Poluentes Químicos da Água , Ferro , Teoria da Densidade Funcional , Reprodutibilidade dos Testes
7.
Adv Sci (Weinh) ; 10(12): e2206907, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36683227

RESUMO

Aqueous zinc-ion batteries (AZIBs) stand out among many monovalent/multivalent metal-ion batteries as promising new energy storage devices because of their good safety, low cost, and environmental friendliness. Nevertheless, there are still many great challenges to exploring new-type cathode materials that are suitable for Zn2+ intercalation. Vanadium-based compounds with various structures, large layer spacing, and different oxidation states are considered suitable cathode candidates for AZIBs. Herein, the research advances in vanadium-based compounds in recent years are systematically reviewed. The preparation methods, crystal structures, electrochemical performances, and energy storage mechanisms of vanadium-based compounds (e.g., vanadium phosphates, vanadium oxides, vanadates, vanadium sulfides, and vanadium nitrides) are mainly introduced. Finally, the limitations and development prospects of vanadium-based compounds are pointed out. Vanadium-based compounds as cathode materials for AZIBs are hoped to flourish in the coming years and attract more and more researchers' attention.

8.
Angew Chem Int Ed Engl ; 62(5): e202216089, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36409041

RESUMO

Vanadium-based oxides with high theoretical specific capacities and open crystal structures are promising cathodes for aqueous zinc-ion batteries (AZIBs). In this work, the confined synthesis can insert metal ions into the interlayer spacing of layered vanadium oxide nanobelts without changing the original morphology. Furthermore, we obtain a series of nanomaterials based on metal-confined nanobelts, and describe the effect of interlayer spacing on the electrochemical performance. The electrochemical properties of the obtained Al2.65 V6 O13 ⋅ 2.07H2 O as cathodes for AZIBs are remarkably improved with a high initial capacity of 571.7 mAh ⋅ g-1 at 1.0 A g-1 . Even at a high current density of 5.0 A g-1 , the initial capacity can still reach 205.7 mAh g-1 , with a high capacity retention of 89.2 % after 2000 cycles. This study demonstrates that nanobelts confined with metal ions can significantly improve energy storage applications, revealing new avenues for enhancing the electrochemical performance of AZIBs.

9.
Genes (Basel) ; 13(11)2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36421823

RESUMO

Mercury (Hg) pollution poses human health and environmental risks worldwide, as it can have toxic effects and causes selective pressure that facilitates the spread of antibiotic resistant genes (ARGs) among microbes. More and more studies have revealed that numerous Hg-related genes (HRGs) can help to resist and transform Hg. In the present study, we systematically analyzed the HRG distribution, abundance, organization, and their co-distribution with ARGs, using 18,731 publicly available plasmid genomes isolated from a Gammaproteobacteria host. Our results revealed that there were many Hg-resistant (mer) operon genes but they were not extensively distributed across plasmids, with only 9.20% of plasmids harboring HRGs. Additionally, no hgcAB genes (which methylate Hg to create methylmercury) were identified in any of the analyzed plasmids. The host source significantly influenced the number of HRGs harbored by plasmids; plasmids isolated from humans and animals harbored a significantly smaller number of HRGs than plasmids isolated from the wastewater and sludge. HRG clusters displayed an extremely high organizational diversity (88 HRG cluster types), though incidences of more than half of the HRG cluster types was <5. This indicates the frequent rearrangement among HRGs in plasmids. The 1368 plasmids harboring both HRGs and ARGs, were dominated by Klebsiella, followed by Escherichia, Salmonella, and Enterobacter. The tightness of the HRG and ARG co-distribution in plasmids was affected by the host sources but not by pathogenicity. HRGs were more likely to co-occur with specific ARG classes (sulfonamide, macrolide-lincosamide-streptogramin, and aminoglycoside resistance genes). Collectively, our results reveal the distribution characteristics of HRGs in plasmids, and they have important implications for further understanding the environmental risks caused by the spread of ARGs through the plasmid-mediated co-transfer of ARGs and HRGs.


Assuntos
Gammaproteobacteria , Mercúrio , Animais , Humanos , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Gammaproteobacteria/genética , Mercúrio/toxicidade , Plasmídeos/genética
10.
Artigo em Inglês | MEDLINE | ID: mdl-36141704

RESUMO

Non-adaptive evacuation behavior refers to a safety risk that cannot be disregarded throughout the evacuation process. In order to lower the risky behavior of evacuation, enhancing people's psychological states and behaviors plays a significant role. This study developed a conceptual model connecting risk communication and non-adaptive evacuation behavior by analyzing the interaction between risk communication, risk perception, emotional exhaustion, and non-adaptive evacuation behavior. The structural equation model was adopted to analyze the 557 questionnaires collected, by which the findings demonstrated that risk communication has a negative impact on non-adaptive evacuation behavior, which is also indirectly affected by risk perception and emotional exhaustion. With the aim to prevent non-adaptive evacuation behavior during the evacuation process, enterprises and organizations can adjust the behavior level, psychological state, and physiological condition of individuals from the perspectives of risk communication, risk perception, and emotional exhaustion.


Assuntos
Emoções , Substâncias Perigosas , China , Comunicação , Humanos , Percepção
11.
Sci Total Environ ; 814: 152547, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-34952081

RESUMO

Due to their relatively large production and few restrictions on uses, novel substitutes for historically used per and poly-fluoroalkyl substances (PFAS) are being used and accumulating in the environment. However, due to a lack of information on their toxicological properties their hazards and risks are hard to estimate. Before fertilization, oocytes of two salmonid species, Arctic Char (Salvelinus alpinus) and Rainbow Trout (Oncorhynchus mykiss), were exposed to three PFAS substances used as substitutes for traditional PFAS, PFBA, PFBS or GenX or two archetypical, historically used, longer-chain PFAS, PFOA and PFOS. Exposed oocytes were subsequently fertilized, incubated and were sampled during several developmental stages, until swim-up. All five PFAS were accumulated into egg yolks with similar absorption rates, and their concentrations in egg yolks were less than respective concentrations in/on egg chorions. Rapid elimination of the five PFAS was observed during the first 3 days after fertilization. Thereafter, amounts of PFOS and PFOA were stable until swim-up, while PFBA, PFBS and GenX were further eliminated during development from one month after the fertilization to swim-up. In these two salmonid species, PFBA, PFBS and GenX were eliminated faster than were PFOS or PFOA.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Oncorhynchus mykiss , Animais , Fertilização
12.
Cities ; 118: 103396, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34334868

RESUMO

Effective control of the COVID-19 pandemic via appropriate management of the built environment is an urgent issue. This study develops a research framework to explore the relationship between COVID-19 incidence and influential factors related to protection of vulnerable populations, intervention in transmission pathways, and provision of healthcare resources. Relevant data for regression analysis and structural equation modeling is collected during the first wave of the pandemic in the United States, from counties with over 100 confirmed cases. In addition to confirming certain factors found in the existing literature, we uncover six new factors significantly associated with COVID-19 incidence. Furthermore, incidence during the lockdown is found to significantly affect incidence after the reopening, highlighting that timely quarantining and treating of patients is essential to avoid the snowballing transmission over time. These findings suggest ways to mitigate the negative effects of subsequent waves of the pandemic, such as special attention of infection prevention in neighborhoods with unsanitary and overcrowded housing, minimization of social activities organized by neighborhood associations, and contactless home delivery service of healthy food. Also worth noting is the need to provide support to people less capable of complying with the stay-at-home order because of their occupations or socio-economic disadvantage.

13.
Adv Mater ; 33(23): e2100170, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33938046

RESUMO

Magnetic miniature robots (MMRs) are small-scale, untethered actuators which can be controlled by magnetic fields. As these actuators can non-invasively access highly confined and enclosed spaces; they have great potential to revolutionize numerous applications in robotics, materials science, and biomedicine. While the creation of MMRs with six-degrees-of-freedom (six-DOF) represents a major advancement for this class of actuators, these robots are not widely adopted due to two critical limitations: i) under precise orientation control, these MMRs have slow sixth-DOF angular velocities (4 degree s-1 ) and it is difficult to apply desired magnetic forces on them; ii) such MMRs cannot perform soft-bodied functionalities. Here a fabrication method that can magnetize optimal MMRs to produce 51-297-fold larger sixth-DOF torque than existing small-scale, magnetic actuators is introduced. A universal actuation method that is applicable for rigid and soft MMRs with six-DOF is also proposed. Under precise orientation control, the optimal MMRs can execute full six-DOF motions reliably and achieve sixth-DOF angular velocities of 173 degree s-1 . The soft MMRs can display unprecedented functionalities; the six-DOF jellyfish-like robot can swim across barriers impassable by existing similar devices and the six-DOF gripper is 20-folds quicker than its five-DOF predecessor in completing a complicated, small-scale assembly.

14.
Glob Chang Biol ; 27(14): 3282-3298, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33837644

RESUMO

Arctic warming associated with global climate change poses a significant threat to populations of wildlife in the Arctic. Since lipids play a vital role in adaptation of organisms to variations in temperature, high-resolution mass-spectrometry-based lipidomics can provide insights into adaptive responses of organisms to a warmer environment in the Arctic and help to illustrate potential novel roles of lipids in the process of thermal adaption. In this study, we studied an ecologically and economically important species-Arctic char (Salvelinus alpinus)-with a detailed multi-tissue analysis of the lipidome in response to chronic shifts in temperature using a validated lipidomics workflow. In addition, dynamic alterations in the hepatic lipidome during the time course of shifts in temperature were also characterized. Our results showed that early life stages of Arctic char were more susceptible to variations in temperature. One-year-old Arctic char responded to chronic increases in temperature with coordinated regulation of lipids, including headgroup-specific remodeling of acyl chains in glycerophospholipids (GP) and extensive alterations in composition of lipids in membranes, such as less lyso-GPs, and more ether-GPs and sphingomyelin. Glycerolipids (e.g., triacylglycerol, TG) also participated in adaptive responses of the lipidome of Arctic char. Eight-week-old Arctic char exhibited rapid adaptive alterations of the hepatic lipidome to stepwise decreases in temperature while showing blunted responses to gradual increases in temperature, implying an inability to adapt rapidly to warmer environments. Three common phosphatidylethanolamines (PEs) (PE 36:6|PE 16:1_20:5, PE 38:7|PE 16:1_22:6, and PE 40:7|PE 18:1_22:6) were finally identified as candidate lipid biomarkers for temperature shifts via machine learning approach. Overall, this work provides additional information to a better understanding of underlying regulatory mechanisms of the lipidome of Arctic organisms in the face of near-future warming.


Assuntos
Lipidômica , Truta , Animais , Regiões Árticas , Mudança Climática , Temperatura
15.
Adv Mater ; 33(19): e2003558, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33338296

RESUMO

Miniature soft robots are mobile devices, which are made of smart materials that can be actuated by external stimuli to realize their desired functionalities. Here, the key advancements and challenges of the locomotion producible by miniature soft robots in micro- to centimeter length scales are highlighted. It is highly desirable to endow these small machines with dexterous locomotive gaits as it enables them to easily access highly confined and enclosed spaces via a noninvasive manner. If miniature soft robots are able to capitalize this unique ability, they will have the potential to transform a vast range of applications, including but not limited to, minimally invasive medical treatments, lab-on-chip applications, and search-and-rescue missions. The gaits of miniature soft robots are categorized into terrestrial, aquatic, and aerial locomotion. Except for the centimeter-scale robots that can perform aerial locomotion, the discussions in this report are centered around soft robots that are in the micro- to millimeter length scales. Under each category of locomotion, prospective methods and strategies that can improve their gait performances are also discussed. This report provides critical analyses and discussions that can inspire future strategies to make miniature soft robots significantly more agile.

16.
Front Microbiol ; 12: 755874, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095786

RESUMO

Pseudomonas stutzeri is a species complex with extremely broad phenotypic and genotypic diversity. However, very little is known about its diversity, taxonomy and phylogeny at the genomic scale. To address these issues, we systematically and comprehensively defined the taxonomy and nomenclature for this species complex and explored its genetic diversity using hundreds of sequenced genomes. By combining average nucleotide identity (ANI) evaluation and phylogenetic inference approaches, we identified 123 P. stutzeri complex genomes covering at least six well-defined species among all sequenced Pseudomonas genomes; of these, 25 genomes represented novel members of this species complex. ANI values of ≥∼95% and digital DNA-DNA hybridization (dDDH) values of ≥∼60% in combination with phylogenomic analysis consistently and robustly supported the division of these strains into 27 genomovars (most likely species to some extent), comprising 16 known and 11 unknown genomovars. We revealed that 12 strains had mistaken taxonomic assignments, while 16 strains without species names can be assigned to the species level within the species complex. We observed an open pan-genome of the P. stutzeri complex comprising 13,261 gene families, among which approximately 45% gene families do not match any sequence present in the COG database, and a large proportion of accessory genes. The genome contents experienced extensive genetic gain and loss events, which may be one of the major mechanisms driving diversification within this species complex. Surprisingly, we found that the ectoine biosynthesis gene cluster (ect) was present in all genomes of P. stutzeri species complex strains but distributed at very low frequency (43 out of 9548) in other Pseudomonas genomes, suggesting a possible origin of the ancestors of P. stutzeri species complex in high-osmolarity environments. Collectively, our study highlights the potential of using whole-genome sequences to re-evaluate the current definition of the P. stutzeri complex, shedding new light on its genomic diversity and evolutionary history.

17.
Cancer Cell Int ; 20: 443, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32943991

RESUMO

BACKGROUND: The microRNA miR-221-3p has previously been found to be an underlying biomarker of pancreatic cancer. However, the mechanisms of miR-221-3p underlying its role in pancreatic cancer pathogenesis, proliferation capability, invasion ability, drug resistance and apoptosis and the clinicopathological value of miR-221-3p have not been thoroughly studied. METHODS: Based on microarray and miRNA-sequencing data extracted from Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA), relevant literature, and real-time quantitative PCR (RT-qPCR), we explored clinicopathological features and the expression of miR-221-3p to determine its clinical effect in pancreatic cancer. Proliferation, migration, invasion, apoptosis and in vitro cytotoxicity tests were selected to examine the roles of mir-221-3p. In addition, several miR-221-3p functional analyses were conducted, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Protein-protein interaction (PPI) network analyses, to examine gene interactions with miR-221-3p. RESULTS: The findings of integrated multi-analysis revealed higher miR-221-3p expression in pancreatic cancer tissues and blood than that in para-carcinoma samples (SMD of miR-221-3p: 1.52; 95% CI 0.96, 2.08). MiR-221-3p is related to survival both in pancreatic cancer and pancreatic ductal adenocarcinoma patients. Cell experiments demonstrated that miR-221-3p promotes pancreatic cancer cell proliferation capability, migration ability, invasion ability, and drug resistance but inhibits apoptosis. Further pancreatic cancer bioinformatics analyses projected 30 genes as the underlying targets of miR-221-3p. The genes were significantly distributed in diverse critical pathways, including microRNAs in cancer, viral carcinogenesis, and the PI3K-Akt signalling pathway. Additionally, PPI indicated four hub genes with threshold values of 5: KIT, CDKN1B, RUNX2, and BCL2L11. Moreover, cell studies showed that miR-221-3p can inhibit these four hub genes expression in pancreatic cancer. CONCLUSIONS: Our research revealed that pancreatic cancer expresses a high-level of miR-221-3p, indicating a potential miR-221-3p role as a prognosis predictor in pancreatic cancer. Moreover, miR-221-3p promotes proliferation capacity, migration ability, invasion ability, and drug resistance but inhibits apoptosis in pancreatic cancer. The function of miR-221-3p in the development of pancreatic cancer may be mediated by the inhibition of hub genes expression. All these results might provide an opportunity to extend the understanding of pancreatic cancer pathogenesis.

18.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-782347

RESUMO

@#Objective    To investigate the preoperative localization of pulmonary glabrous nodules. Methods    A total of 192 patients admitted to General Hospital of  Northern Theater Command from April 2012 to September 2019 were selected for the study. There were 95 males and 97 females at an age of 56.47±11.79 years. All patients completed preoperative examination, and were divided into a positioning group (n=97) and a non-positioning group (n=95) according to whether the preoperative positioning was performed. And the surgical indicators between the two groups were compared. According to the substance of ground-glass opacity, they were divided into a pure ground-glass nodules group (n=23) and a mixed ground-glass nodules group (n=74) in the positioning group and a pure ground-glass nodules group (n=14) and a mixed ground-glass nodules group (n=81) in the non-positioning group . According to the size and distance of the nodules from the pleura and whether the nodules could be detected, the corresponding linear function was obtained. Results    The operative time of methylene blue localization group was shorter than that of the no localization group. In the scatter plot, the corresponding diameter and depth of the nodules and the corresponding coordinate points which can be explored were described. And linear regression was performed on all the coordinate points to obtain the linear function: depth=0.648×diameter–1.446 (mm). It can be used as an indication for the preoperative localization of pure ground-glass nodules in Da Vinci robotic surgery. Linear function: depth=0.559 5×diameter+0.56 (mm). It can be used as an indication of preoperative localization of mixed ground-glass nodules in Da Vinci robotic surgery. Conclusion    This equation can be used as a preoperative indication for clinical peripheral pulmonary ground-glass nodules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...