Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 257: 121672, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38705064

RESUMO

The transfer of particulate organic carbon (POC) to dissolved organic carbon (DOC; OC transferP-D) is crucial for the marine carbon cycle. Sediment resuspension driven by hydrodynamic forcing can affect the burial of sedimentary POC and benthic biological processes in marginal sea. However, the role of sediment grain size fraction on OC transferP-D and the subsequent impact on OC cycling remain unknown. Here, we conduct sediment resuspension simulations by resuspending grain-size fractionated sediments (< 20, 20-63, and > 63 µm) into filtered seawater, combined with analyses of OC content, optical characteristics, 13C and 14C isotope compositions, and molecular dynamics simulations to investigate OC transferP-D and its regulations on OC bioavailability under sediment resuspension. Our results show that the relative intensities of terrestrial humic-like OC (refractory DOC) increase in resuspension experiments of < 20, 20-63, and > 63 µm sediments by 0.14, 0.01, and 0.03, respectively, likely suggesting that sediment resuspension drives refractory DOC transfer into seawater. The variations in the relative intensities of microbial protein-like DOC are linked to the change of terrestrial humic-like OC, accompanied by higher DOC content and reactivity in seawater, particularly in finer sediments resuspension experiments. This implies that transferred DOC likely fuels microbial growth, contributing to the subsequent enhancement of DOC bioavailability in seawater. Our results also show that the POC contents increase by 0.35 %, 0.66 %, and 0.93 % in < 20, 20-63, and > 63 µm resuspension experiments at the end of incubation, respectively. This suggests that the re-absorption of OC on particles may be a significant process, but previously unrecognized during sediment resuspension. Overall, our findings suggest that sediment resuspension promotes the OC transferP-D, and the magnitudes of OC transferP-D further influence the DOC and POC properties by inducing microbial production and respiration. These processes significantly affect the dynamics and recycling of biological carbon pump in shallow marginal seas.


Assuntos
Ciclo do Carbono , Carbono , Sedimentos Geológicos , Água do Mar , Sedimentos Geológicos/química , Água do Mar/química , Oceanos e Mares
2.
ISME Commun ; 3(1): 117, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964026

RESUMO

The world's deepest yongle blue hole (YBH) is characterized by sharp dissolved oxygen (DO) gradients, and considerably low-organic-carbon and high-inorganic-carbon concentrations that may support active autotrophic communities. To understand metabolic strategies of autotrophic communities for obtaining carbon and energy spanning redox gradients, we presented finer characterizations of microbial community, metagenome and metagenome-assembled genomes (MAGs) in the YBH possessing oxic, hypoxic, essentially anoxic and completely anoxic zones vertically. Firstly, the YBH microbial composition and function shifted across the four zones, linking to different biogeochemical processes. The recovery of high-quality MAGs belonging to various uncultivated lineages reflected high novelty of the YBH microbiome. Secondly, carbon fixation processes and associated energy metabolisms varied with the vertical zones. The Calvin-Benson-Bassham (CBB) cycle was ubiquitous but differed in affiliated taxa at different zones. Various carbon fixation pathways were found in the hypoxic and essentially anoxic zones, including the 3-hyroxypropionate/4-hydroxybutyrate (3HP/4HB) cycle affiliated to Nitrososphaeria, and Wood-Ljungdahl (WL) pathway affiliated to Planctomycetes, with sulfur oxidation and dissimilatory nitrate reduction as primary energy-conserving pathways. The completely anoxic zone harbored diverse taxa (Dehalococcoidales, Desulfobacterales and Desulfatiglandales) utilizing the WL pathway coupled with versatile energy-conserving pathways via sulfate reduction, fermentation, CO oxidation and hydrogen metabolism. Finally, most of the WL-pathway containing taxa displayed a mixotrophic lifestyle corresponding to flexible carbon acquisition strategies. Our result showed a vertical transition of microbial lifestyle from photo-autotrophy, chemoautotrophy to mixotrophy in the YBH, enabling a better understanding of carbon fixation processes and associated biogeochemical impacts with different oxygen availability.

3.
Microbiol Spectr ; : e0114923, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37623326

RESUMO

The Sansha Yongle Blue Hole (SYBH), the deepest blue hole in the world, is an excellent habitat for revealing biogeochemical cycles in the anaerobic environment. However, how sulfur cycling is mediated by microorganisms in the SYBH hasn't been fully understood. In this study, the water layers of the SYBH were divided into oxic zone, hypoxic zone, anoxic zone I and II, and microbial-mediated sulfur cycling in the SYBH was comprehensively interpreted. The 16S rRNA genes/transcripts analyses showed that the microbial community structures associated with the sulfur cycling in each zone had distinctive features. Sulfur-oxidizing bacteria were mostly constituted by Gammaproteobacteria, Alphaproteobacteria, Campylobacterota, and Chlorobia above the anoxic zone I and sulfate-reducing bacteria were dominated by Desulfobacterota in anoxic zones. Metagenomic analyses showed that the sulfide-oxidation-related gene sqr and genes encoding the Sox system were mainly distributed in the anoxic zone I, while genes related to dissimilatory sulfate reduction and sulfur intermediate metabolite reduction were mainly distributed in the anoxic zone II, indicating different sulfur metabolic processes between these two zones. Moreover, sulfur-metabolism-related genes were identified in 81 metagenome-assembled genomes (MAGs), indicating a high diversity of microbial communities involved in sulfur cycling. Among them, three MAGs from the candidate phyla JdFR-76 and AABM5-125-24 with genes related to dissimilatory sulfate reduction exhibited distinctive metabolic features. Our results showed unique and novel microbial populations in the SYBH sulfur cycle correlated to the sharp redox gradients, revealing complex biogeochemical processes in this extreme environment. IMPORTANCE Oxygen-deficient regions in the global ocean are expanding rapidly and affect the growth, reproduction and ecological processes of marine organisms. The anaerobic water body of about 150 m in the Sansha Yongle Blue Hole (SYBH) provided a suitable environment to study the specific microbial metabolism in anaerobic seawater. Here, we found that the vertical distributions of the total and active communities of sulfur-oxidizing bacteria (SOB) and sulfate-reducing bacteria (SRB) were different in each water layer of the SYBH according to the dissolved oxygen content. Genes related to sulfur metabolism also showed distinct stratification characteristics. Furthermore, we have obtained diverse metagenome-assembled genomes, some of which exhibit special sulfur metabolic characteristics, especially candidate phyla JdFR-76 and AABM5-125-24 were identified as potential novel SRB. The results of this study will promote further understanding of the sulfur cycle in extreme environments, as well as the environmental adaptability of microorganisms in blue holes.

4.
Sci Total Environ ; 804: 150209, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34517331

RESUMO

The signals of fire activity induced from climate and ancient human activities could be recorded in sedimentary strata. We examined a 6000-year black­carbon (BC) record-including char and soot-of a sediment core from the South Yellow Sea. The climate change had a threshold effect on the fire regime, and dominated the char emissions. The soot/BC signals depicted that the anthropogenic emissions related to the evolution of the Chinese civilization since the Early Bronze Age (~4 ka) have overwhelmed natural soot emissions. The soot variation in the record closely matched periods when there was large-scale use of coal or charcoal after the Han Dynasty and when indigenous coking technology was promoted after the Tang Dynasty; low soot-abundance in the record coincided with periods of social unrest. This work illustrates how soot signals can be a robust tracer of civilization evolution.


Assuntos
Carbono , Monitoramento Ambiental , Carbono/análise , China , Civilização , Humanos , Fuligem/análise
6.
Int J Syst Evol Microbiol ; 70(3): 1623-1629, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31961286

RESUMO

Blue holes are unique geomorphological units characterized by steep redox and biogeochemical gradients. Yongle Blue Hole is located on the largest atoll (Yongle Atoll) of the western Xisha Islands in the South China Sea. A Gram-stain-negative, facultatively anaerobic, non-motile, non-flagellated marine bacterium with creamy white colonies, designated JC036T, was isolated from Yongle Blue Hole. Cells were short-rod-shaped and catalase-negative. 16S rRNA gene sequence analysis showed that sequence similarities were lower than 91.6 % against all validly named species in the family Prolixibacteraceae; a reconstructed phylogenetic tree indicated that strain JC036T formed a lineage with strains in the family Prolixibacteraceae. Growth occurred at 4-37 °C (optimum, 28 °C), at pH 5.0-9.0 (optimum, 7.0) and in the presence of 2-6 % (w/v) NaCl (optimum, 3 %). The prevalent isoprenoid quinone of strain JC036T was menaquinone-7 (MK-7). Iso-C15 : 0 and iso-C17 : 0 3-OH were the predominant fatty acids. The major polar lipids included a phospholipid, phosphatidylethanolamine, an aminophospholipid and four unidentified lipids. The genomic DNA G+C content of strain JC036T was 37.8 mol%. Based on physiological and biochemical characteristics and whole genome comparisons, we propose a new genus and species, Puteibacter caeruleilacunae gen. nov., sp. nov., within the family Prolixibacteraceae. The type strain of Puteibacter caeruleilacunae is JC036T (=JCM 33128T=MCCC 1K03579T). From this study, a deeper understanding of the community of the microorganism and their roles in biogeochemical cycles, especially anaerobic bacteria, is provided.


Assuntos
Bacteroidetes/classificação , Filogenia , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Bacteroidetes/isolamento & purificação , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
7.
Microorganisms ; 7(12)2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31795180

RESUMO

We report an Illumina high-throughput sequencing protocol of eukaryotic microbes in the world's deepest marine blue hole, Sansha Yongle Blue Hole, Xisha, South China Sea. The variable V9 region of small subunit (SSU) rDNA, was sequenced using this approach from the waters of blue hole and outer reef slope. 917,771 unique eukaryotic 18S rRNA gene sequences and 6093 operational taxonomic units (OTUs) were identified. Significant differences in the eukaryotic composition were observed between the blue hole and outer reef slope, and the richness in the blue hole was much higher than that in the outer reef slope. The richness and diversity of eukaryotes in the blue hole were both lowest at 60 m and highest at 100 m depth. Eukaryotic microalgae assemblages dominated by Dinophyceae were the most abundant in the 10-20 m water column in the hole. Fauna was the main group at and below a depth of 60 m, where Araneae and Cyclopoida were dominant in the 60 m and 80 m water layer, respectively. There was a large number of Entoprocta at a depth of 180 m in the hole, where little oxygen was detected. Turbidity and nitrite concentration had a significant effect on the eukaryote community structure (p < 0.01).

8.
Front Microbiol ; 10: 2404, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681249

RESUMO

The Sansha Yongle Blue Hole is the deepest blue hole in the world and exhibits unique environmental characteristics. In this paper, Illumina sequencing and qPCR analysis were conducted to obtain the microbial information in this special ecosystem. The results showed that the richness and diversity of bacterial communities in the hole was greater than those of archaeal communities, and bacterial and archaeal communities were dominated by Proteobacteria and Euryarchaeota, respectively. Temperature and nitrate concentration significantly contributed to the heterogeneous distribution of major bacterial clades; salinity explained most variations of the archaeal communities, but not significant. A sudden increase of bacterial 16S rRNA, archaeal 16S rRNA, ANAMMOX 16S rRNA, nirS and dsrB gene was noticed from 90 to 100 m in the hole probably due to more phytoplankton at this depth. Sulfur oxidation and nitrate reduction were the most abundant predicted ecological functions in the hole, while lots of archaea were predicted to be involved in aerobic ammonia oxidation and methanogenesis. The co-occurrence network analysis illustrated that a synergistic effect between sulfate reduction and sulfur oxidation, and between nitrogen fixation and denitrification, a certain degree of coupling between sulfur and nitrogen cycle was also observed in the hole. The comparisons of bacterial and archaeal communities between the hole and other caves in the world (or other areas of the South China Sea) suggest that similar conditions are hypothesized to give rise to similar microbial communities, and environmental conditions may contribute significantly to the bacterial and archaeal communities.

9.
Int J Syst Evol Microbiol ; 68(11): 3540-3545, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30230441

RESUMO

A Gram-stain-negative, facultative anaerobic, non-motile, short-clavate and non-flagellated marine bacterium strain, designated JC075T, was isolated from the Yongle Blue Hole in the South China Sea. Based on the 16S rRNA gene sequence, strain JC075T was found to be closely related to Marinifilum albidiflavum FB208T (97.10 %), Marinifilum flexuosum DSM 21950T (96.43 %) and Marinifilum fragile JCM 15579T (95.58 %), with less than 90.24 % sequence similarity to other genera of the family Marinifilaceae. The growth temperature was in the range of 10-37 °C, and the optimum temperature was 16 °C. Optimal growth occurred at pH 7.0 and in the presence of 3 % (w/v) NaCl. The isoprenoid quinone of strain JC075T was identified as menaquinone-7 and the predominant fatty acids (>10 %) were iso-C15 : 0 (47.9 %), summed feature 9 (C17 : 1 or/and iso-C17 : 1ω9c; 18.7 %) and iso-C17 : 0 3-OH (14.9 %). The major polar lipids were one phosphatidylethanolamine, one phospholipid, one aminophospholipid, one glycolipid, one aminolipid and two unidentified lipids. The DNA G+C content of strain JC075T was 35.8 mol%. On the basis of polyphasic analysis, strain JC075T was considered to represent a novel species of the genus Marinifilum, for which the name Marinifilumbreve sp. nov. is proposed. The type strain is JC075T (=KCTC 15646T=MCCC 1K03477T=JCM 32401T).


Assuntos
Bacteroidetes/classificação , Filogenia , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Temperatura , Vitamina K 2/análogos & derivados , Vitamina K 2/química
10.
Environ Pollut ; 156(3): 1325-31, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18396363

RESUMO

The rapid economic development in the Yangtze River Delta (YRD), China in the last three decades has had a significant impact on the environment of the East China Sea (ECS). Lead isotopic compositions of a (210)Pb dated sediment core collected from the coastal ECS adjacent to the Yangtze River Estuary were analyzed to track the Pb pollution in the region. The baseline Pb concentration in the coastal ECS sediments before the industrialization in China was 32 microg g(-1), and the corresponding 206Pb/207Pb ratio was 1.195. The high-resolution profiles of Pb flux and 206Pb/207Pb ratios had close relationships with the economic development and the history of the use of leaded gasoline in China, and they were clearly different from those of most European countries and United States.


Assuntos
Monitoramento Ambiental/métodos , Radioisótopos de Chumbo/análise , Poluentes Químicos da Água/análise , Poluição da Água/análise , China , Europa (Continente) , Chumbo/análise , Rios , Água do Mar , Estados Unidos , Movimentos da Água
11.
Environ Sci Technol ; 40(17): 5304-11, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16999103

RESUMO

A well-placed 210Pb-dated sediment core extracted from the distal mud in the central continental shelf of the East China Sea is used to reconstruct the high-resolution atmospheric depositional record of polycyclic aromatic hydrocarbons (PAHs), believed to be transported mainly from China in the past 200 years due to the East Asian Monsoon. Total PAHs (TPAHs), based on the 16 USEPA priority PAHs, range from 27 in 1788 to 132 ng g(-1) in 2001. TPAH variation in the core reflects energy usage changes and follows closely the historical economic development in China. PAHs in the core are dominantly pyrogenic in source, i.e., they are mainly from the incomplete combustion of coal and biomass burning. Several individual PAHs suggest that contribution from incomplete petroleum combustion has increased during recent years. Analysis of the 2 + 3 ring and the 5 + 6 ring PAHs and principle component analysis provide more evidence in the change in the energy structure, especially after 1978 when China embarked on the "Reform and Open" Policy, indicating the transformation from an agricultural to an industrial economy of China. The historical profile of PAH distribution in the study area is obviously different from the United States and Europe due to their difference in energy structure and economic development stages.


Assuntos
Sedimentos Geológicos/química , Compostos Policíclicos/análise , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...