Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.438
Filtrar
1.
Front Oncol ; 14: 1376490, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983927

RESUMO

Background and aims: Patients with relapsed/refractory aggressive B-cell lymphoma(r/r aBCL)who progressed after CD19-specific chimeric antigen receptor T-cell therapy (CD19CART) had a poor prognosis. Application of CAR T-cells targeting a second different antigen (CD20) expressed on the surface of B-cell lymphoma as subsequent anti-cancer salvage therapy (CD20-SD-CART) is also an option. This study aimed to evaluate the survival outcome of CD20-SD-CART as a salvage therapy for CD19 CART treatment failure. Methods: This retrospective cohort study enrolled patients with aBCL after the failure of CD19 CART treatment at Beijing Gobroad Boren Hospital from December 2019 to May 2022. Patients were subsequently treated with CD20CART therapy or non-CART therapy (polatuzumab or non-polatuzumab). Results: A total of 93 patients were included in the study, with 54 patients receiving CD20-SD-CART therapy. After a median follow-up of 18.54 months, the CD20-SD-CART group demonstrated significantly longer median progression-free survival (4.04 months vs. 2.27 months, p=0.0032) and median overall survival (8.15 months vs. 3.02 months, p<0.0001) compared to the non-CART group. The complete response rate in the CD20-SD-CART group (15/54, 27.8%) was also significantly higher than the non-CART group (3/38, 7.9%, p=0.03). Multivariate analysis further confirmed that CD20CART treatment was independently associated with improved overall survival (HR, 0.28; 95% CI, 0.16-0.51; p<0.0001) and progression-free survival (HR, 0.46; 95% CI, 0.27-0.8; p=0.005). Conclusion: CD20-SD-CART could serve as an effective therapeutic option for patients with relapsed or refractory aggressive B-cell lymphoma after CD19CART treatment failure.

2.
Sci Rep ; 14(1): 16229, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004624

RESUMO

Previous research on the association between Family Doctor Contract Services (FDCS) and health has only considered a single indicator of health and has not considered the endogeneity of independent variables. This study aimed to evaluate the association from a multidimensional perspective of the health of middle-aged and older people using the instrumental variables method and determine the underlying mechanisms. Using data from the 2018 China Health and Retirement Longitudinal Study surveys, a total of 19,438 sample was obtained. Health was measured by health related-quality of life (HR-QoL), subjective well-being, and cognitive function. The instrumental variables method was used to estimate the association. Mediation analysis was employed to analyze the underlying mechanisms. The results of the instrumental variables method showed a correlation between FDCS and health, such as HR-QoL (η = 33.714, p < 0.01), subjective well-being (η = 1.106, p < 0.05), and cognitive function (η = 4.133, p < 0.05). However, we found no evidence that FDCS improved physical health. We also identified reduced utilization of healthcare services and increased social activities as mediators of the effect of FDCS on health. The Chinese government should improve incentive-based initiatives to improve the quality of FDCS. Moreover, more attention needs to be paid to the multidimensional health of middle-aged and older people, especially vulnerable groups, such as older individuals and those in rural areas.


Assuntos
Serviços Contratados , Qualidade de Vida , Humanos , China , Feminino , Masculino , Idoso , Pessoa de Meia-Idade , Estudos Longitudinais , Nível de Saúde , Cognição
3.
Int J Mol Med ; 54(2)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38963035

RESUMO

Globally, non­small cell lung cancer (NSCLC) is a significant threat to human health, and constitutes >80% of lung cancer cases. Cisplatin (CDDP), a commonly used drug in clinical treatment, has been the focus of research aiming to mitigate its potent toxicity through encapsulation within liposomes. However, challenges, such as a reduced drug loading efficiency and nonspecific release, have emerged as obstacles. The present study aimed to improve the encapsulation efficiency of CDDP within liposomes by pre­preparation of CDDP and modifying the liposome surface through the incorporation of peanut agglutinin (PNA) as a ligand [CDDP­loaded PNA­modified liposomes (CDDP­PNA­Lip)]. This strategy was designed to enhance the delivery of CDDP to tumour tissues, thereby reducing associated side effects. The effect of CDDP­PNA­Lip on the proliferation and migration of NSCLC cell lines with high MUC1 expression was elucidated through in vitro studies. Additionally, the capacity of PNA modification to augment the targeted anti­tumour efficacy of liposomes was assessed through xenograft tumour experiments. The results indicated that in an in vitro uptake assay Rhodamine B (RhB)­loaded PNA­modified liposomes were taken up by cells with ~50% higher efficiency compared with free RhB. In addition, CDDP­PNA­Lip resulted in a 2.65­fold enhancement of tumour suppression in vivo compared with free CDDP. These findings suggested that the encapsulation of CDDP within ligand­modified liposomes may significantly improve its tumour­targeting capabilities, providing valuable insights for clinical drug development.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Cisplatino , Lipossomos , Neoplasias Pulmonares , Aglutinina de Amendoim , Cisplatino/farmacologia , Cisplatino/administração & dosagem , Lipossomos/química , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Animais , Aglutinina de Amendoim/química , Linhagem Celular Tumoral , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto , Proliferação de Células/efeitos dos fármacos , Camundongos Nus , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Camundongos Endogâmicos BALB C , Movimento Celular/efeitos dos fármacos , Feminino , Sistemas de Liberação de Medicamentos/métodos
4.
J Biol Chem ; : 107516, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960036

RESUMO

Focal segmental glomerulosclerosis (FSGS), a common cause of primary glomerulonephritis, has a poor prognosis and is pathologically featured by tubulointerstitial injury. Thrombospondin-1 (TSP-1) is an extracellular matrix protein that acts in combination with different receptors in the kidney. Here, we analyzed the tubular expression of TSP-1 and its receptor integrin ß3 (ITGB3) in FSGS. Previously the renal interstitial chip analysis of FSGS patients with tubular interstitial injury showed that the expressions of TSP-1 and ITGB3 were up-regulated. We found that the level of TSP-1 and ITGB3 increased in the tubular cells of FSGS patients. The serum level of TSP-1 increased and was correlated to the degree of tubulointerstitial lesions in FSGS patients. THBS1/ITGB3 signaling induced renal tubular injury in HK-2 cells exposure to BSA and the ADR-induced nephropathy model. THBS1 knockout ameliorated tubular injury and renal fibrosis in ADR-treated mice. THBS1 knockdown decreased the expression of KIM-1 and caspase 3 in the HK-2 cells treated with BSA, while THBS1 overexpression could induce tubular injury. In vivo, we identified cyclo-RGDfK as an agent to block the binding of TSP-1 to ITGB3. Cyclo-RGDfK treatment could alleviate ADR-induced renal tubular injury and interstitial fibrosis in mice. Moreover, TSP-1 and ITGB3 were colocalized in tubular cells of FSGS patients and ADR-treated mice. Taken together, our data showed that TSP-1/ITGB3 signaling contributed to the development of renal tubulointerstitial injury in FSGS, potentially identifying a new therapeutic target for FSGS.

5.
Poult Sci ; 103(9): 104019, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38991384

RESUMO

Meat qualities of free-range chicken (Xuan-Zhou) (XZ-FRC) are closely associated with slaughter age and directly influence the economic benefits of supplier and consumer's preference. Understanding of the relationship between meat qualities and ages will be of prime important to explore a better slaughter age of XZ-FRC. In this study, the quality traits of breast and thigh muscles from XZ-FRCs at 9 to 14 wk were analyzed to establish a relatively reliable method for selecting a better slaughter age. The results showed that the effects of slaughter ages on color (CIE L*, a* and b* values), shear force, centrifugal loss, and flavor of XZ-FRCs were significant (P < 0.05). There were greater differences in meat qualities, whatever breast or thigh muscles, between same or different ages. Eleven feature indexes used for colligation evaluation of slaughter age were selected by combining the quality characteristics and data analysis. The score of colligation evaluation for XZ-FRCs at 12 wk was higher than that at 9 and 14 wk, suggesting that the 12 wk was an optimal slaughter age. This work would provide a reference method that helps the producers of livestock and poultry to select a better slaughter age.

6.
Poult Sci ; 103(9): 104011, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38991386

RESUMO

Exposure to copper (Cu) has been associated with metabolic disorders in animals and humans, but the underlying mechanism remains unclear. One-day-old broiler chickens, numbering a total of 192, were nourished with dietary intakes that contained varying concentrations of Cu, specifically 11, 110, 220, and 330 mg/kg of Cu, for a period extending over a duration of 7 wk. As a result of the study, Cu exposure resulted in vacuolization, fragmentation of mitochondria cristae, and the increase of autophagosomes in hepatocytes. Metabolomics analysis illustrated that Cu caused a total of 59 different metabolites in liver, predominantly associated with the glycerophospholipid metabolic pathway, leading to metabolic disruption. Moreover, high-Cu diet markedly reduced the levels of AMPKα1, p-AMPKα1, mTOR, and p-mTOR and enhanced the expression levels of the autophagy-related factors (Atg5, Dynein, Beclin1, and LC3-II). Overall, Cu exposure caused chicken liver injury and resulted in disturbed metabolic processes and mediated autophagy primarily through the AMPK-mTOR axis.

7.
J Immunother Cancer ; 12(7)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38991728

RESUMO

BACKGROUND: Metabolomics has the characteristics of terminal effects and reflects the physiological state of biological diseases more directly. Several current biomarkers of multiple omics were revealed to be associated with immune-related adverse events (irAEs) occurrence. However, there is a lack of reliable metabolic biomarkers to predict irAEs. This study aims to explore the potential metabolic biomarkers to predict risk of irAEs and to investigate the association of plasma metabolites level with survival in patients with lung cancer receiving PD-1/PD-L1 inhibitor treatment. METHODS: The study collected 170 plasmas of 85 patients with lung cancer who received immune checkpoint inhibitors (ICIs) treatment. 58 plasma samples of 29 patients with irAEs were collected before ICIs treatment and at the onset of irAEs. 112 plasma samples of 56 patients who did not develop irAEs were collected before ICIs treatment and plasma matched by treatment cycles to onset of irAEs patients. Untargeted metabolomics analysis was used to identify the differential metabolites before initiating ICIs treatment and during the process that development of irAEs. Kaplan-Meier curves analysis was used to detect the associations of plasma metabolites level with survival of patients with lung cancer. RESULTS: A total of 24 differential metabolites were identified to predict the occurrence of irAEs. Baseline acylcarnitines and steroids levels are significantly higher in patients with irAEs, and the model of eight acylcarnitine and six steroid metabolites baseline level predicts irAEs occurrence with area under the curve of 0.91. Patients with lower concentration of baseline decenoylcarnitine(AcCa(10:1) 2, decenoylcarnitine(AcCa(10:1) 3 and hexanoylcarnitine(AcCa(6:0) in plasma would have better overall survival (OS). Moreover, 52 differential metabolites were identified related to irAEs during ICIs treatment, dehydroepiandrosterone sulfate, corticoserone, cortisol, thyroxine and sphinganine 1-phaosphate were significantly decreased in irAEs group while oxoglutaric acid and taurocholic acid were significantly increased in irAEs group. CONCLUSIONS: High levels of acylcarnitines and steroid hormone metabolites might be risk factor to development of irAEs, and levels of decenoylcarnitine (AcCa(10:1) 2, decenoylcarnitine (AcCa(10:1) 3 and hexanoylcarnitine (AcCa(6:0) could be used to predict OS for patients with lung cancer received ICIs treatment.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias Pulmonares , Metabolômica , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/sangue , Masculino , Feminino , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/efeitos adversos , Metabolômica/métodos , Idoso , Pessoa de Meia-Idade , Antígeno B7-H1/sangue , Antígeno B7-H1/antagonistas & inibidores , Idoso de 80 Anos ou mais , Receptor de Morte Celular Programada 1/antagonistas & inibidores
8.
Front Cell Infect Microbiol ; 14: 1371837, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994005

RESUMO

Virus receptors determine the tissue tropism of viruses and have a certain relationship with the clinical outcomes caused by viral infection, which is of great importance for the identification of virus receptors to understand the infection mechanism of viruses and to develop entry inhibitor. Proximity labeling (PL) is a new technique for studying protein-protein interactions, but it has not yet been applied to the identification of virus receptors or co-receptors. Here, we attempt to identify co-receptor of SARS-CoV-2 by employing TurboID-catalyzed PL. The membrane protein angiotensin-converting enzyme 2 (ACE2) was employed as a bait and conjugated to TurboID, and a A549 cell line with stable expression of ACE2-TurboID was constructed. SARS-CoV-2 pseudovirus were incubated with ACE2-TurboID stably expressed cell lines in the presence of biotin and ATP, which could initiate the catalytic activity of TurboID and tag adjacent endogenous proteins with biotin. Subsequently, the biotinylated proteins were harvested and identified by mass spectrometry. We identified a membrane protein, AXL, that has been functionally shown to mediate SARS-CoV-2 entry into host cells. Our data suggest that PL could be used to identify co-receptors for virus entry.


Assuntos
Enzima de Conversão de Angiotensina 2 , Receptores Virais , SARS-CoV-2 , Internalização do Vírus , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Células A549 , Receptores Virais/metabolismo , Receptor Tirosina Quinase Axl , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , COVID-19/virologia , COVID-19/metabolismo , Coloração e Rotulagem/métodos , Células HEK293 , Biotinilação , Mapeamento de Interação de Proteínas , Biotina/metabolismo
9.
World J Gastroenterol ; 30(23): 2934-2946, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38946875

RESUMO

In this editorial, we comment on an article titled "Morphological and biochemical characteristics associated with autophagy in gastrointestinal diseases", which was published in a recent issue of the World Journal of Gastroenterology. We focused on the statement that "autophagy is closely related to the digestion, secretion, and regeneration of gastrointestinal cells". With advancing research, autophagy, and particularly the pivotal role of the macroautophagy in maintaining cellular equilibrium and stress response in the gastrointestinal system, has garnered extensive study. However, the significance of mitophagy, a unique selective autophagy pathway with ubiquitin-dependent and independent variants, should not be overlooked. In recent decades, mitophagy has been shown to be closely related to the occurrence and development of gastrointestinal diseases, especially inflammatory bowel disease, gastric cancer, and colorectal cancer. The interplay between mitophagy and mitochondrial quality control is crucial for elucidating disease mechanisms, as well as for the development of novel treatment strategies. Exploring the pathogenesis behind gastrointestinal diseases and providing individualized and efficient treatment for patients are subjects we have been exploring. This article reviews the potential mechanism of mitophagy in gastrointestinal diseases with the hope of providing new ideas for diagnosis and treatment.


Assuntos
Autofagia , Gastroenteropatias , Mitocôndrias , Mitofagia , Humanos , Autofagia/fisiologia , Gastroenteropatias/patologia , Gastroenteropatias/metabolismo , Gastroenteropatias/fisiopatologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Trato Gastrointestinal/patologia , Trato Gastrointestinal/metabolismo , Animais
10.
Biochem Genet ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961001

RESUMO

Spinal cord injury (SCI) involves neuronal apoptosis and axonal disruption, leading to severe motor dysfunction. Studies indicate that exosomes transport microRNAs (miRNAs) and play a crucial role in intercellular communication. This study aimed to explore whether the bone marrow mesenchymal stem cell (BMSCs)-exosomal miR-17-92 cluster can protect against SCI and to explain the underlying mechanisms. In vivo and in vitro SCI models were established and treated with control exosomes (con-exo) or exosomes derived from BMSCs transfected with miR-17-92 cluster plasmid (miR-17-92-exo). Rat BMSCs were isolated and positive markers were identified by flow cytometry. BMSC-derived exosomes were extracted and verified using transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and western blotting. The expression of the miR-17-92 cluster was validated by quantitative reverse transcription PCR (qRT-PCR). Spinal cord function, histopathological changes, apoptotic cells, and inflammatory cytokines release in spinal cord tissues were assessed using the Basso-Beattie-Bresnahan (BBB) score, hematoxylin and eosin (HE) staining, terminal deoxynucleotide transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) staining, enzyme-linked immunosorbent assay (ELISA), and qRT-PCR. In PC12 cells, cell proliferation, apoptosis, apoptosis-related proteins cleaved-Caspase3 expression, and inflammatory factors secretion were analyzed using a cell counting kit-8 (CCK8) assay, flow cytometry, western blotting, and ELISA. Our data revealed that the exosomes were successfully isolated from rat BMSCs. The BMSC-exosomal miR-17-92 cluster improved neural functional recovery after SCI, as evidenced by an increased BBB score, improved pathological damage, reduced neuronal apoptosis, and decreased inflammatory factors release. Additionally, miR-17-92-exo treatment significantly inhibited lipopolysaccharide (LPS)-induced reduction in cell viability, increase in cell apoptosis, and upregulation of inflammatory factors in PC12 cells. The exosomal miR-17-92 cluster derived from BMSCs improved functional recovery and exhibited neuroprotective effects in SCI by alleviating apoptosis and inflammation.

11.
BMC Pulm Med ; 24(1): 309, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956553

RESUMO

BACKGROUND: Treatment of non-small lung cancer (NSCLC) has evolved in recent years, benefiting from advances in immunotherapy and targeted therapy. However, limited biomarkers exist to assist clinicians and patients in selecting the most effective, personalized treatment strategies. Targeted next-generation sequencing-based genomic profiling has become routine in cancer treatment and generated crucial clinicogenomic data over the last decade. This has made the development of mutational biomarkers for drug response possible. METHODS: To investigate the association between a patient's responses to a specific somatic mutation treatment, we analyzed the NSCLC GENIE BPC cohort, which includes 2,004 tumor samples from 1,846 patients. RESULTS: We identified somatic mutation signatures associated with response to immunotherapy and chemotherapy, including carboplatin-, cisplatin-, pemetrexed- or docetaxel-based chemotherapy. The prediction power of the chemotherapy-associated signature was significantly affected by epidermal growth factor receptor (EGFR) mutation status. Therefore, we developed an EGFR wild-type-specific mutation signature for chemotherapy selection. CONCLUSION: Our treatment-specific gene signatures will assist clinicians and patients in selecting from multiple treatment options.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Receptores ErbB , Neoplasias Pulmonares , Mutação , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Masculino , Feminino , Pessoa de Meia-Idade , Receptores ErbB/genética , Idoso , Prognóstico , Estudos de Coortes , Biomarcadores Tumorais/genética , Imunoterapia , Carboplatina/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Pemetrexede/uso terapêutico , Medicina de Precisão , Sequenciamento de Nucleotídeos em Larga Escala , Antineoplásicos/uso terapêutico
12.
Nanoscale ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984618

RESUMO

Reservoir computing (RC) has attracted considerable attention for its efficient handling of temporal signals and lower training costs. As a nonlinear dynamic system, RC can map low-dimensional inputs into high-dimensional spaces and implement classification using a simple linear readout layer. The memristor exhibits complex dynamic characteristics due to its internal physical processes, which renders them an ideal choice for the implementation of physical reservoir computing (PRC) systems. This review focuses on PRC systems based on memristors, explaining the resistive switching mechanism at the device level and emphasizing the tunability of their dynamic behavior. The development of memristor-based reservoir computing systems is highlighted, along with discussions on the challenges faced by this field and potential future research directions.

13.
Adv Sci (Weinh) ; : e2406828, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984724

RESUMO

Photothermal CO2 methanation reaction represents a promising strategy for addressing CO2-related environmental issues. The presence of efficient tandem catalytic sites with a localized high-temperature is an effective pathway to enhance the performance of CO2 methanation. Here the bimetallic RuCo nanoparticles anchored on ZrO2 fiber cotton (RuCo/ZrO2) as a photothermal catalyst for CO2 methanation are prepared. A significant photothermal CO2 methanation performance with optimal CH4 selectivity (99%) and rate (169.93 mmol gcat -1 h-1) is achieved. The photothermal energy of the RuCo bimetallic nanoparticles, confined by the infrared insulation and low thermal conductivity of the ZrO2 fiber cotton (ZrO2 FC), provides a localized high-temperature. In situ spectroscopic experiments on RuCo/ZrO2, Ru/ZrO2, and Co/ZrO2 indicate that the construction of tandem catalytic sites, where the Co site favors CO2 conversion to CO while incorporating Ru enhances CO* adsorption for subsequent hydrogenation, results in a higher selectivity toward CH4. This work opens a new insight into designing tandem catalysts with a photothermal confinement effect in CO2 methanation reaction.

14.
Plants (Basel) ; 13(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38999689

RESUMO

The low nutrient content of soil in desert ecosystems results in unique physiological and ecological characteristics of plants under long-term water and nutrient stress, which is the basis for the productivity and stability maintenance of the desert ecosystem. However, the relationship between the soil and the plant nutrient elements in the desert ecosystem and its mechanism for maintaining ecosystem stability is still unclear. In this study, 35 sampling sites were established in an area with typical desert vegetation in the Qaidam Basin, based on a drought gradient. A total of 90 soil samples and 100 plant samples were collected, and the soil's physico-chemical properties, as well as the nutrient elements in the plant leaves, were measured. Regression analysis, redundancy analysis (RDA), the Theil-Sen Median and Mann-Kendall methods, the structural equation model (SEM), and other methods were employed to analyze the distribution characteristics of the soil and plant nutrient elements along the drought gradient and the relationship between the soil and leaf nutrient elements and its impact on ecosystem stability. The results provided the following conclusions: Compared with the nutrient elements in plant leaves, the soil's nutrient elements had a more obvious regularity of distribution along the drought gradient. A strong correlation was observed between the soil and leaf nutrient elements, with soil organic carbon and alkali-hydrolyzed nitrogen identified as important factors influencing the leaf nutrient content. The SEM showed that the soil's organic carbon had a positive effect on ecosystem stability by influencing the leaf carbon, while the soil's available phosphorus and the mean annual temperature had a direct positive effect on stability, and the soil's total nitrogen had a negative effect on stability. In general, the soil nutrient content was high in areas with a low mean annual temperature and high precipitation, and the ecosystem stability in the area distribution of typical desert vegetation in the Qaidam Basin was low. These findings reveal that soil nutrients affect the stability of desert ecosystems directly or indirectly through plant nutrients in the Qaidam Basin, which is crucial for maintaining the stability of desert ecosystems with the background of climate change.

15.
Sensors (Basel) ; 24(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000929

RESUMO

Defect inspection of existing buildings is receiving increasing attention for digitalization transfer in the construction industry. The development of drone technology and artificial intelligence has provided powerful tools for defect inspection of buildings. However, integrating defect inspection information detected from UAV images into semantically rich building information modeling (BIM) is still challenging work due to the low defect detection accuracy and the coordinate difference between UAV images and BIM models. In this paper, a deep learning-based method coupled with transfer learning is used to detect defects accurately; and a texture mapping-based defect parameter extraction method is proposed to achieve the mapping from the image U-V coordinate system to the BIM project coordinate system. The defects are projected onto the surface of the BIM model to enrich a surface defect-extended BIM (SDE-BIM). The proposed method was validated in a defect information modeling experiment involving the No. 36 teaching building of Nantong University. The results demonstrate that the methods are widely applicable to various building inspection tasks.

16.
Inflammation ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954262

RESUMO

Long-term inflammation and impaired angiogenesis are thought to be the causes of delayed healing or nonhealing of diabetic wounds. S100A12 is an essential pro-inflammatory factor involved in inflammatory reactions and serves as a biomarker for various inflammatory diseases. However, whether high level of S100A12 exists in and affects the healing of diabetic wounds, as well as the underlying molecular mechanisms, remain unclear. In this study, we found that the serum concentration of S100A12 is significantly elevated in patients with type 2 diabetes. Exposure of stratified epidermal cells to high glucose environment led to increased expression and secretion of S100A12, resulting in impaired endothelial function by binding to the advanced glycation endproducts (RAGE) or Toll-like receptor 4 (TLR4) on endothelial cell. The transcription factor Krüpple-like Factor 5 (KLF5) is highly expressed in the epidermis under high glucose conditions, activating the transcriptional activity of the S100A12 and boost its expression. By establishing diabetic wounds model in alloxan-induced diabetic rabbit, we found that local inhibition of S100A12 significantly accelerated diabetic wound healing by promoting angiogenesis. Our results illustrated the novel endothelial-specific injury function of S100A12 in diabetic wounds and suggest that S100A12 is a potential target for the treatment of diabetic wounds.

17.
Artigo em Inglês | MEDLINE | ID: mdl-38954707

RESUMO

Real-time detection of harmful gases at room temperature has become a serious problem in public health and environmental monitoring. Two-dimensional materials with semiconductor properties BiOCl is a promising gas-sensitive material due to its large specific surface area and adjustable band gap as well as outstanding safety characteristics. However, limited by the weak gas adsorption sites and sluggish charge-transfer ability, the performance of BiOCl could not be fully exploited. Oxygen vacancy (Vo) engineering can introduce lattice defects, thereby significantly increasing the local charge density and enhancing the adsorption of gases, which is an effective strategy to enhance the gas-sensing performance. In this work, we composite BiOCl with a vacancy (Vo-BiOCl) and reduced graphene oxide (rGO) to construct a Vo-BiOCl/rGO heterostructure with enhanced gas adsorption sites. Experimental and theoretical calculations show that Vo can enhance the adsorption of gases and the introduction of rGO forms a high-quality heterostructure with BiOCl, which can effectively reduce the band gap of BiOCl and promote electron transfer, thereby improving the sensitivity of the sensor. Benefiting from above, Vo-BiOCl/rGO achieves the ability to detect low concentrations of NO2/NH3 at room temperature, with high sensitivity (55% at 1 ppm of NO2 and -28% at 1 ppm of NH3), fast response time (40 s at 1 ppm of NO2 and 2 s at 1 ppm of NH3), good stability (over 150 days), and fully recoverable gas sensitivity.

18.
Int Immunopharmacol ; 138: 112597, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38955025

RESUMO

BACKGROUND: Guillain-Barré syndrome (GBS) is an auto-inflammatory peripheral nerve disease. Dendritic cell-mediated T cell polarization is of pivotal importance in demyelinating lesions of peripheral nerves and nerve roots. However, the regulatory function of VX-509 (Decernotinib)-modified tolerogenic dendritic cells (VX-509-tolDCs) during immune remodeling following GBS remains unclear. Here, we used experimental autoimmune neuritis (EAN) as a model to investigate these aspects of GBS. METHODS: DCs were treated with varying concentrations of VX-509 (0.25, 1, and 4 µM) or served as a control using 10-8 M 1,25-(OH)2D3. Flow cytometry was employed to assess the apoptosis, phenotype, and capacity to induce T cell responses of the treated DCs. In the in vivo experiments, EAN mice received administration of VX-509-tolDCs or 1,25-(OH)2D3-tolDCs via the tail vein at a dose of 1x106 cells/mouse on days 5, 9, 13, and 17. RESULTS: VX-509 inhibited the maturation of DCs and promoted the development of tolDCs. The function of antigen-specific CD4 + T cells ex vivo was influenced by VX-509-tolDCs. Furthermore, the adoptive transfer of VX-509-tolDCs effectively alleviated inflammatory demyelinating lesions in EAN by promoting Th17/Treg (T helper 17 and regulatory T cells) rebalance. CONCLUSION: The adoptive transfer of VX-509-tolDCs alleviated inflammatory demyelinating lesions in a mouse model of GBS, known as the EAN mouse, by partially restoring the balance between Treg and Th17 cells.

19.
Int Immunopharmacol ; 138: 112559, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38955028

RESUMO

BACKGROUND: Semaphorin 3A (Sema3A) is a member of neural guidance factor family well-known for inducing the collapse of nerve cell growth cone and regulating nerve redistribution. It also has been characterized as an immunoregulatory and tumor promoting factor. Our previous study showed that Sema3A was involved in the regulation of sympathetic innervation and neuropathic pain of endometriosis. Nevertheless, the role of Sema3A in the development of endometriosis and its potential upstreaming factor are still not clear. METHODS: Histology experiments were carried to detect the expression of Sema3A, hypoxia -inducible factor 1α (HIF-1α) and the distribution of macrophages. Cell experiments were used to explore the effect of Sema3A on the proliferation and migration of endometrial stromal cells (ESCs) and to confirm the regulatory action of HIF-1α on Sema3A. In vivo experiments were carried out to explore the role of Sema3A on the development of endometriosis. RESULTS: Sema3A was highly expressed in endometriotic lesions and could enhanced the proliferation and migration abilities of ESCs. Aberrant macrophage distribution was found in endometriotic lesions. Sema3A also promoted the differentiation of monocytes into anti-inflammatory macrophages, so indirectly mediating the proliferation and migration of ESCs. Hypoxic microenvironment induced Sema3A mRNA and protein expression in ESCs via HIF-1α. Administration of Sema3A promoted the development of endometriosis in a mouse model. CONCLUSIONS: Sema3A, which is regulated by HIF-1α, is a promoting factor for the development of endometriosis. Targeting Sema3A may be a potential treatment strategy to control endometriotic lesions.

20.
J Bone Oncol ; 47: 100614, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38975332

RESUMO

Objective: To develop a model combining clinical and radiomics features from CT scans for a preoperative noninvasive evaluation of Huvos grading of neoadjuvant chemotherapy in patients with HOS. Methods: 183 patients from center A and 42 from center B were categorized into training and validation sets. Features derived from radiomics were obtained from unenhanced CT scans.Following dimensionality reduction, the most optimal features were selected and utilized in creating a radiomics model through logistic regression analysis. Integrating clinical features, a composite clinical radiomics model was developed, and a nomogram was constructed. Predictive performance of the model was evaluated using ROC curves and calibration curves. Additionally, decision curve analysis was conducted to assess practical utility of nomogram in clinical settings. Results: LASSO LR analysis was performed, and finally, three selected image omics features were obtained.Radiomics model yielded AUC values with a good diagnostic effect for both patient sets (AUCs: 0.69 and 0.68, respectively). Clinical models (including sex, age, pre-chemotherapy ALP and LDH levels, new lung metastases within 1 year after surgery, and incidence) performed well in terms of Huvos grade prediction, with an AUC of 0.74 for training set. The AUC for independent validation set stood at 0.70. Notably, the amalgamation of radiomics and clinical features exhibited commendable predictive prowess in training set, registering an AUC of 0.78. This robust performance was subsequently validated in the independent validation set, where the AUC remained high at 0.75. Calibration curves of nomogram showed that the predictions were in good agreement with actual observations. Conclusion: Combined model can be used for Huvos grading in patients with HOS after preoperative chemotherapy, which is helpful for adjuvant treatment decisions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...