Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 9(1): 3735, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30282993

RESUMO

Yellow rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a devastating fungal disease threatening much of global wheat production. Race-specific resistance (R)-genes are used to control rust diseases, but the rapid emergence of virulent Pst races has prompted the search for a more durable resistance. Here, we report the cloning of Yr15, a broad-spectrum R-gene derived from wild emmer wheat, which encodes a putative kinase-pseudokinase protein, designated as wheat tandem kinase 1, comprising a unique R-gene structure in wheat. The existence of a similar gene architecture in 92 putative proteins across the plant kingdom, including the barley RPG1 and a candidate for Ug8, suggests that they are members of a distinct family of plant proteins, termed here tandem kinase-pseudokinases (TKPs). The presence of kinase-pseudokinase structure in both plant TKPs and the animal Janus kinases sheds light on the molecular evolution of immune responses across these two kingdoms.


Assuntos
Basidiomycota/patogenicidade , Resistência à Doença/genética , Genes de Plantas/fisiologia , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Triticum/fisiologia , Animais , Mapeamento Cromossômico , Evolução Molecular , Hordeum/genética , Janus Quinases/genética , Mutagênese , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Domínios Proteicos/genética , Domínios Proteicos/fisiologia , Triticum/microbiologia
2.
Mol Breed ; 35(1)2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27818611

RESUMO

Stripe rust disease is caused by the fungus Puccinia striiformis f. sp. tritici and severely threatens wheat worldwide, repeatedly breaking resistance conferred by resistance genes and evolving more aggressive strains. Wild emmer wheat, Triticum dicoccoides, is an important source for novel stripe rust resistance (Yr) genes. Yr15, a major gene located on chromosome 1BS of T. dicoccoides, was previously reported to confer resistance to a broad spectrum of stripe rust isolates, at both seedling and adult plant stages. Introgressions of Yr15 into cultivated T. aestivum bread wheat and T. durum pasta wheat that began in the 1980s are widely used. In the present study, we aimed to validate SSR markers from the Yr15 region as efficient tools for marker-assisted selection (MAS) for introgression of Yr15 into wheat and to compare the outcome of gene introgression by MAS and by conventional phenotypic selection. Our findings establish the validity of MAS for introgression of Yr15 into wheat. We show that the size of the introgressed segment, defined by flanking markers, varies for both phenotypic selection and MAS. The genetic distance of the MAS marker from Yr15 and the number of backcross steps were the main factors affecting the length of the introgressed donor segments. Markers Xbarc8 and Xgwm493, which are the nearest flanking markers studied, were consistent and polymorphic in all 34 introgressions reported here and are therefore the most recommended markers for the introgression of Yr15 into wheat cultivars. Introgression directed by markers, rather than by phenotype, will facilitate simultaneous selection for multiple stripe rust resistant genes and will help to avoid escapees during the selection process.

3.
Theor Appl Genet ; 128(2): 211-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25388968

RESUMO

KEY MESSAGE: Yr15 provides broad resistance to stripe rust, an important wheat disease. REMAP- and IRAP-derived co-dominant SCAR markers were developed and localize Yr15 to a 1.2 cM interval. They are reliable across many cultivars. Stripe rust [Pucinia striiformis f.sp. tritici (Pst)] is one of the most important fungal diseases of wheat, found on all continents and in over 60 countries. Wild emmer wheat (Triticum dicoccoides), which is the tetraploid progenitor of durum wheat, is a valuable source of novel stripe rust resistance genes for wheat breeding. T. dicoccoides accession G25 carries Yr15 on chromosome 1BS. Yr15 confers resistance to virtually all tested Pst isolates; it is effective in durum and bread wheat introgressions and their derivatives. Retrotransposons generate polymorphic insertions, which can be scored as Mendelian markers using techniques such as REMAP and IRAP. Six REMAP- and IRAP-derived SCAR markers were mapped using 1,256 F2 plants derived from crosses of the susceptible T. durum accession D447 (DW1) with its resistant BC3F9 and BC3F10 (B9 and B10) near isogenic lines, which carried Yr15 introgressed from G25. The nearest markers segregated 0.1 cM proximally and 1.1 cM distally to Yr15. These markers were also mapped and validated at the same position in another 500 independent F2 plants derived from crosses of B9 and B10 with the susceptible cultivar Langdon (LDN). SC2700 and SC790, defining Yr15 on an interval of 1.2 cM, were found to be reliable and robust co-dominant markers in a wide range of wheat lines and cultivars with and without Yr15. These markers are useful tags in marker-assisted wheat breeding programs that aim to incorporate Yr15 into elite wheat lines and cultivars for durable and broad-spectrum resistance to stripe rust.


Assuntos
Resistência à Doença/genética , Engenharia Genética , Marcadores Genéticos , Triticum/genética , Basidiomycota/patogenicidade , Cruzamento , Mapeamento Cromossômico , Cruzamentos Genéticos , DNA de Plantas/genética , Etiquetas de Sequências Expressas , Doenças das Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...