Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Sci Nutr ; 10(4): 1320-1328, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35432981

RESUMO

Mandarins have a delicate flavor and are easy to peel and easy to consume. However, they are relatively perishable and suffer from flavor deterioration after harvest. The goal of the current study was to examine the effects of commercial packinghouse operations on the flavor of 'Orri' mandarins. For that purpose, we collected fruit from four different points along a commercial citrus packing line: (1) directly from the harvest bin, (2) after application of a hot (53°C) fungicide treatment for 30 s, (3) after waxing, and (4) after waxing and after the fruit had passed through a hot-air drying tunnel (37°C) for 2 min. The collected fruit were stored for 3 or 6 weeks at 5°C and then kept for five more days under shelf-life conditions at 22°C. The observed results indicate that the hot fungicide treatment had no effect on flavor quality. However, the waxing and waxing +drying treatments resulted in significant increases in ethanol accumulation, lower flavor-acceptability scores, and increased off-flavors. Gas-chromatography mass-spectrometry (GC-MS) analysis revealed that the waxing and waxing +drying treatments resulted in particular increases in the levels of alcohol and ethyl ester volatiles; whereas levels of other aroma volatiles (i.e., esters, aldehydes, monoterpenes, and sesquiterpenes) decreased after storage in all fruit samples. Overall, the waxing process in commercial citrus packinghouses increased ethanol and ethyl ester volatile levels and harmed flavor acceptability. These findings demonstrate the need to identify new wax formulations that do not hamper fruit-flavor quality.

2.
Front Plant Sci ; 11: 255, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32211009

RESUMO

The temporal formation and spatial distribution of stomata on the surface of citrus floral organs and, specifically, on the ovule from which the fruit develops, were analyzed using citrus plants that express green fluorescent protein (GFP) under the guard cell-specific KST1 promoter. Stomata are found on the style, sepal, and anther of the closed flower and on ovules from the stage of anthesis. It has previously been shown that hexokinase (HXK) mediates sugar-sensing in leaf guard cells and stimulates stomatal closure. The activity and response of citrus fruit stomata to sugar-sensing by HXK was examined using plants that express HXK under the KST1 promoter. Those plants are referred to as GCHXK plants. The transpiration of young green GCHXK citrus fruits was significantly reduced, indicating that their stomata respond to sugar similar to leaf stomata. Toward fruit maturation, fruit stomata are plugged and stop functioning, which explains why WT and GCHXK mature yellow fruits exhibited similar water loss. Seeds of the GCHXK plants were smaller and germinated more slowly than the WT seeds. We suggest that the stomata of young green citrus fruits, but not mature yellow fruits, respond to sugar levels via HXK and that fruit stomata are important for proper seed development.

3.
J Agric Food Chem ; 67(17): 4800-4807, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30973717

RESUMO

To identify factors governing peel-color development in mandarins, we examined carotenoid content and composition and the expression of carotenoid-related genes during four stages of ripening (i.e., green, breaker, yellow, and orange) in two varieties: 'Ora', which has orange fruit, and 'Shani', which has orange-reddish fruit. The two varieties had different carotenoid compositions, and 'Shani' had a significantly higher level of total carotenoid pigments. 'Shani' was rich in the deep orange ß-cryptoxanthin and the orange-reddish ß-citraurin, whereas 'Ora' was rich in the orange violaxanthin. RNA-Seq analysis revealed significantly greater expression of the carotenoid-biosynthesis genes PSY, ßLCY, ßCHX, and CCD4b, as well as MEP-pathway genes and several ethylene-biosynthesis and -signaling genes in 'Shani' fruit. In contrast, the expression levels of genes involved in the synthesis of α-branch carotenoids (i.e., εLCY and εCHX) and ZEP, which is involved in the formation of violaxanthin, were significantly higher in the 'Ora' fruit.


Assuntos
Citrus/genética , Frutas/química , Carotenoides/análise , Carotenoides/metabolismo , Citrus/química , Citrus/metabolismo , Cor , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
J Sci Food Agric ; 98(1): 18-26, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28631804

RESUMO

During the last decade, there has been a continuous rise in consumption and global marketing of fresh, easy-to-peel mandarins, with current annual production of nearly 29 million tons. Nevertheless, most of the existing knowledge on quality traits of citrus fruit comes from research conducted on oranges and grapefruit, which are the main products for the citrus juice manufacturing industry; relatively little is yet known regarding the unique fruit quality traits of mandarins, nor about the great diversity in these traits among the various natural sub-groups and varieties of mandarins. In the present review we discuss the physiological, biochemical, and molecular factors governing key fruit quality attributes of mandarins, including fruit colour, size and shape, ease of peeling, seedlessness, flavour, and nutritional quality. Fruit colour, size, and shape contribute to external appearance; peelability and seedlessness to ease of consumption; and flavour and nutritional quality to internal quality. © 2017 Society of Chemical Industry.


Assuntos
Citrus/química , Extratos Vegetais/química , Citrus/genética , Citrus/crescimento & desenvolvimento , Citrus/metabolismo , Aromatizantes/química , Aromatizantes/metabolismo , Frutas/química , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Valor Nutritivo , Extratos Vegetais/metabolismo
5.
J Sci Food Agric ; 96(1): 57-65, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25824867

RESUMO

BACKGROUND: Mandarins constitute a large, diverse and important group within the Citrus family. Here, we analysed the aroma volatiles compositions of 13 mandarin varieties belonging to seven genetically different natural sub-groups that included common mandarin (C. reticulata Blanco), clementine (C. clementina Hort. ex. Tan), satsuma (C. unshiu Marcovitch), Mediterranean mandarin (C. deliciosa Tenore), King mandarin (C. nobilis Loureiro), and mandarin hybrids, such as tangor (C. reticulata × C. sinensis) and tangelo (C. reticulata × C. paradisi). RESULTS: We found that mandarin varieties among tangors ('Temple', 'Ortanique'), tangelos ('Orlando', 'Minneola') and King ('King') had more volatiles, at higher levels, and were richer in sesquiterpene and ester volatiles, than other varieties belonging to the sub-groups common mandarin ('Ora', 'Ponkan'), clementine ('Oroval', 'Caffin'), satsuma ('Okitsu', 'Owari') and Mediterranean mandarin ('Avana', 'Yusuf Efendi'). Hierarchical clustering and principal component analysis accurately differentiated between mandarin varieties and natural sub-groups according to their aroma-volatile profiles. CONCLUSIONS: Although we found wide differences in aroma-volatiles compositions among varieties belonging to different natural sub-groups, we detected only minor differences among varieties within any natural sub-group. These findings suggest that selecting appropriate parents would enable manipulation of aroma-volatile compositions in future mandarin breeding programmes.


Assuntos
Citrus/química , Frutas/química , Odorantes/análise , Compostos Orgânicos Voláteis/análise , Citrus/classificação , Humanos , Melhoramento Vegetal , Especificidade da Espécie
6.
J Food Sci ; 80(2): S418-25, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25559381

RESUMO

We evaluated the sensory quality of 42 mandarin varieties that belong to 7 different natural subgroups: common mandarin (Citrus reticulata Blanco), Clementine (Citrus clementina Hort. ex. Tan), Satsuma (Citrus unshiu Marcovitch), Mediterranean mandarin (Citrus deliciosa Tenore), King mandarin (Citrus nobilis Loureiro), and mandarin hybrids, such as tangor (Citrus reticulata × Citrus sinensis) and tangelo (Citrus reticulata × Citrus paradisi). Consumer flavor acceptance tests revealed wide diversity in flavor preferences among mandarin varieties and subgroups. Furthermore, descriptive flavor-analysis tests conducted with the aid of a trained sensory panel revealed that the 9 most preferred varieties had similar flavor profiles, characterized by high sweetness, moderate to low acidity levels, low bitterness and gumminess, strong fruity and mandarin flavor, and high juiciness. The average total soluble solids (TSS) and acidity levels among the highly preferred varieties were 13.1% and 1.1%, respectively. In contrast, the 8 least preferred varieties were either too sour or gummy or had low levels of sweetness, fruity, or mandarin flavor, and either high acidity levels (>1.4%) or low TSS levels (<12.0%). Pearson tests revealed significant positive correlations between flavor acceptance and perceptions of sweetness, fruitiness, and mandarin flavor, and negative correlations with acidity levels and perceptions of sourness, bitterness, and gumminess. Principle component analysis clearly distinguished between highly accepted varieties that were tightly correlated with high TSS levels and perceptions of sweetness fruitiness and mandarin flavor, as compared with the least accepted varieties that were correlated with high acidity levels and perceptions of sourness, bitterness, and gumminess.


Assuntos
Citrus/classificação , Frutas/química , Paladar , Adulto , Citrus/química , Citrus paradisi/química , Citrus paradisi/classificação , Citrus sinensis/química , Citrus sinensis/classificação , Comportamento do Consumidor , Feminino , Preferências Alimentares , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Componente Principal
7.
Front Plant Sci ; 6: 1114, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26734024

RESUMO

Hexokinase (HXK) is a sugar-phosphorylating enzyme involved in sugar-sensing. It has recently been shown that HXK in guard cells mediates stomatal closure and coordinates photosynthesis with transpiration in the annual species tomato and Arabidopsis. To examine the role of HXK in the control of the stomatal movement of perennial plants, we generated citrus plants that express Arabidopsis HXK1 (AtHXK1) under KST1, a guard cell-specific promoter. The expression of KST1 in the guard cells of citrus plants has been verified using GFP as a reporter gene. The expression of AtHXK1 in the guard cells of citrus reduced stomatal conductance and transpiration with no negative effect on the rate of photosynthesis, leading to increased water-use efficiency. The effects of light intensity and humidity on stomatal behavior were examined in rooted leaves of the citrus plants. The optimal intensity of photosynthetically active radiation and lower humidity enhanced stomatal closure of AtHXK1-expressing leaves, supporting the role of sugar in the regulation of citrus stomata. These results suggest that HXK coordinates photosynthesis and transpiration and stimulates stomatal closure not only in annual species, but also in perennial species.

8.
BMC Genomics ; 15: 826, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25266376

RESUMO

BACKGROUND: The ability to form adventitious roots (AR) is an economically important trait that is lost during the juvenile-to-mature phase change in woody plants. Auxin treatment, which generally promotes rooting in juvenile cuttings, is often ineffective when applied to mature cuttings. The molecular basis for this phenomenon in Eucalyptus grandis was addressed here. RESULTS: A comprehensive microarray analysis was performed in order to compare gene-expression profiles in juvenile and mature cuttings of E. grandis, with or without auxin treatment on days, 0, 1, 3, 6, 9 and 12 post AR induction. Under these conditions AR primordia were formed only in auxin-treated juvenile cuttings. However, clustering the expression profiles revealed that the time after induction contributed more significantly to the differences in expression than the developmental phase of the cuttings or auxin treatment. Most detected differences which were related to the developmental phase and auxin treatment occurred on day 6, which correlated with the kinetics of AR-primordia formation. Among the functional groups of transcripts that differed between juvenile and mature cuttings was that of microtubules (MT). The expression of 42 transcripts annotated as coding for tubulin, MT-associated proteins and kinesin motor proteins was validated in the same RNA samples. The results suggest a coordinated developmental and auxin dependent regulation of several MT-related transcripts in these cuttings. To determine the relevance of MT remodeling to AR formation, MTs were subjected to subtle perturbations by trifluralin, a MT disrupting drug, applied during auxin induction. Juvenile cuttings were not affected by the treatment, but rooting of mature cuttings increased from 10 to more than 40 percent. CONCLUSIONS: The data suggest that juvenile-specific MT remodeling is involved in AR formation in E. grandis.


Assuntos
Eucalyptus/genética , Perfilação da Expressão Gênica , Microtúbulos/metabolismo , Análise por Conglomerados , Eucalyptus/efeitos dos fármacos , Eucalyptus/metabolismo , Ácidos Indolacéticos/farmacologia , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Transcriptoma
9.
BMC Genomics ; 15: 524, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24965948

RESUMO

BACKGROUND: The change from juvenile to mature phase in woody plants is often accompanied by a gradual loss of rooting ability, as well as by reduced microRNA (miR) 156 and increased miR172 expression. RESULTS: We characterized the population of miRNAs of Eucalyptus grandis and compared the gradual reduction in miR156 and increase in miR172 expression during development to the loss of rooting ability. Forty known and eight novel miRNAs were discovered and their predicted targets are listed. The expression pattern of nine miRNAs was determined during adventitious root formation in juvenile and mature cuttings. While the expression levels of miR156 and miR172 were inverse in juvenile and mature tissues, no mutual relationship was found between high miR156 expression and rooting ability, or high miR172 expression and loss of rooting ability. This is shown both in E. grandis and in E. brachyphylla, in which explants that underwent rejuvenation in tissue culture conditions were also examined. CONCLUSIONS: It is suggested that in these Eucalyptus species, there is no correlation between the switch of miR156 with miR172 expression in the stems and the loss of rooting ability.


Assuntos
Eucalyptus/metabolismo , MicroRNAs/metabolismo , RNA de Plantas/metabolismo , Transcriptoma , Eucalyptus/genética , Eucalyptus/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Interferência de RNA , RNA de Plantas/genética , Análise de Sequência de RNA
10.
J Agric Food Chem ; 62(21): 4938-46, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24828369

RESUMO

A detailed phenotypic analysis of fruit-quality traits was conducted among 46 mandarin varieties within the Israeli Citrus breeding collection, belonging to genetically different natural subgroups, including common mandarin (C. reticulata Blanco), clementine (C. clementina Hort. ex. Tan), satsuma (C. unshiu Marcovitch), Mediterranean mandarin (C. deliciosa Tenore), King mandarin (C. nobilis Loureiro), and mandarin hybrids, such as tangor (C. reticulata × C. sinensis) and tangelo (C. reticulata × C. paradisi). Evaluated qualities included physical attributes (size, shape, color, peel thickness, and seed number); physiological properties (ripening period, peelability, and segmentation); nutritional and biochemical composition (vitamin C, phenol, flavonoid, and carotenoid contents and total antioxidant activity); and sensory attributes (total soluble solids and acid levels, flavor preference, sweetness, sourness, and fruitiness). The results indicated wide genetic variability in fruit-quality traits among mandarin varieties and natural subgroups, and statistical and hierarchical clustering analysis revealed multiple correlations among attributes. Such phenomic analysis is an obligatory requirement for identification of molecular markers for distinct fruit-quality traits and for selection of appropriate parents for future breeding programs.


Assuntos
Citrus/genética , Frutas/química , Variação Genética , Adulto , Ácido Ascórbico/análise , Cruzamento , Carotenoides/análise , Citrus/química , Citrus/classificação , Feminino , Frutas/classificação , Frutas/genética , Humanos , Masculino , Pessoa de Meia-Idade , Fenóis/análise , Fenótipo , Paladar
11.
Plant J ; 71(5): 787-99, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22519851

RESUMO

The loss of rooting capability following the transition from the juvenile to the mature phase is a known phenomenon in woody plant development. Eucalyptus grandis was used here as a model system to study the differences in gene expression between juvenile and mature cuttings. RNA was prepared from the base of the two types of cuttings before root induction and hybridized to a DNA microarray of E. grandis. In juvenile cuttings, 363 transcripts were specifically upregulated, enriched in enzymes of oxidation/reduction processes. In mature cuttings, 245 transcripts were specifically upregulated, enriched in transcription factors involved in the regulation of secondary metabolites. A gene encoding for nitrate reductase (NIA), which is involved in nitric oxide (NO) production, was among the genes that were upregulated in juvenile cuttings. Concomitantly, a transient burst of NO was observed upon excision, which was higher in juvenile cuttings than in mature ones. Treatment with an NO donor improved rooting of both juvenile and mature cuttings. A single NIA gene was found in the newly released E. grandis genome sequence, the cDNA of which was isolated, overexpressed in Arabidopsis plants and shown to increase NO production in intact plants. Therefore, higher levels of NIA in E. grandis juvenile cuttings might lead to increased ability to produce NO and to form adventitious roots. Arabidopsis transgenic plants constantly expressing EgNIA did not exhibit a significantly higher lateral or adventitious root formation, suggesting that spatial and temporal rather than a constitutive increase in NO is favorable for root differentiation.


Assuntos
Eucalyptus/enzimologia , Nitrato Redutase/metabolismo , Óxido Nítrico/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Sequência de Aminoácidos , Sequência de Bases , Eucalyptus/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...