Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7030, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919281

RESUMO

Many aging individuals accumulate the pathology of Alzheimer's disease (AD) without evidence of cognitive decline. Here we describe an integrated neurodegeneration checkpoint response to early pathological changes that restricts further disease progression and preserves cognitive function. Checkpoint activation is mediated by the REST transcriptional repressor, which is induced in cognitively-intact aging humans and AD mouse models at the onset of amyloid ß-protein (Aß) deposition and tau accumulation. REST induction is mediated by the unfolded protein response together with ß-catenin signaling. A consequence of this response is the targeting of REST to genes involved in key pathogenic pathways, resulting in downregulation of gamma secretase, tau kinases, and pro-apoptotic proteins. Deletion of REST in the 3xTg and J20 AD mouse models accelerates Aß deposition and the accumulation of misfolded and phosphorylated tau, leading to neurodegeneration and cognitive decline. Conversely, viral-mediated overexpression of REST in the hippocampus suppresses Aß and tau pathology. Thus, REST mediates a neurodegeneration checkpoint response with multiple molecular targets that may protect against the onset of AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Animais , Humanos , Camundongos , Envelhecimento/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/prevenção & controle , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Disfunção Cognitiva/genética , Disfunção Cognitiva/prevenção & controle , Modelos Animais de Doenças , Camundongos Transgênicos , Proteínas tau/metabolismo
2.
Mol Psychiatry ; 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938767

RESUMO

Neurodevelopmental changes and impaired stress resistance have been implicated in the pathogenesis of bipolar disorder (BD), but the underlying regulatory mechanisms are unresolved. Here we describe a human cerebral organoid model of BD that exhibits altered neural development, elevated neural network activity, and a major shift in the transcriptome. These phenotypic changes were reproduced in cerebral organoids generated from iPS cell lines derived in different laboratories. The BD cerebral organoid transcriptome showed highly significant enrichment for gene targets of the transcriptional repressor REST. This was associated with reduced nuclear REST and REST binding to target gene recognition sites. Reducing the oxygen concentration in organoid cultures to a physiological range ameliorated the developmental phenotype and restored REST expression. These effects were mimicked by treatment with lithium. Reduced nuclear REST and derepression of REST targets genes were also observed in the prefrontal cortex of BD patients. Thus, an impaired cellular stress response in BD cerebral organoids leads to altered neural development and transcriptional dysregulation associated with downregulation of REST. These findings provide a new model and conceptual framework for exploring the molecular basis of BD.

3.
Nat Commun ; 13(1): 3243, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35688811

RESUMO

Cerebral organoids can be used to gain insights into cell type specific processes perturbed by genetic variants associated with neuropsychiatric disorders. However, robust and scalable phenotyping of organoids remains challenging. Here, we perform RNA sequencing on 71 samples comprising 1,420 cerebral organoids from 25 donors, and describe a framework (Orgo-Seq) to integrate bulk RNA and single-cell RNA sequence data. We apply Orgo-Seq to 16p11.2 deletions and 15q11-13 duplications, two loci associated with autism spectrum disorder, to identify immature neurons and intermediate progenitor cells as critical cell types for 16p11.2 deletions. We further applied Orgo-Seq to identify cell type-specific driver genes. Our work presents a quantitative phenotyping framework to integrate multi-transcriptomic datasets for the identification of cell types and cell type-specific co-expressed driver genes associated with neuropsychiatric disorders.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Deficiência Intelectual , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Deleção Cromossômica , Transtornos Cromossômicos , Cromossomos Humanos Par 16 , Humanos , Deficiência Intelectual/genética , Análise de Sequência de RNA , Análise de Célula Única , Transcriptoma/genética
4.
Sci Adv ; 8(13): eabj8658, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35353567

RESUMO

The age-related cognitive decline of normal aging is exacerbated in neurodegenerative diseases including Alzheimer's disease (AD). However, it remains unclear whether age-related cognitive regulators in AD pathologies contribute to life span. Here, we show that C/EBPß, an Aß and inflammatory cytokine-activated transcription factor that promotes AD pathologies via activating asparagine endopeptidase (AEP), mediates longevity in a gene dose-dependent manner in neuronal C/EBPß transgenic mice. C/EBPß selectively triggers inhibitory GABAnergic neuronal degeneration by repressing FOXOs and up-regulating AEP, leading to aberrant neural excitation and cognitive dysfunction. Overexpression of CEBP-2 or LGMN-1 (AEP) in Caenorhabditis elegans neurons but not muscle stimulates neural excitation and shortens life span. CEBP-2 or LGMN-1 reduces daf-2 mutant-elongated life span and diminishes daf-16-induced longevity. C/EBPß and AEP are lower in humans with extended longevity and inversely correlated with REST/FOXO1. These findings demonstrate a conserved mechanism of aging that couples pathological cognitive decline to life span by the neuronal C/EBPß/AEP pathway.


Assuntos
Proteínas de Caenorhabditis elegans , Longevidade , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Longevidade/genética , Camundongos , Neurônios/metabolismo
5.
Curr Opin Neurobiol ; 72: 91-100, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34689041

RESUMO

The aging brain is shaped by many structural and functional alterations. Recent cross-disciplinary efforts have uncovered powerful and integrated adaptive mechanisms that promote brain health and prevent functional decline during aging. Here, we review some of the most robust adaptive mechanisms and how they can be engaged to protect, and restore the aging brain.


Assuntos
Encéfalo , Envelhecimento , Encéfalo/fisiologia , Humanos
6.
J Am Soc Nephrol ; 32(8): 1974-1986, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34078664

RESUMO

BACKGROUND: CKD is associated with the loss of functional nephr ons, leading to increased mechanical and metabolic stress in the remaining cells, particularly for cells constituting the filtration barrier, such as podocytes. The failure of podocytes to mount an adequate stress response can lead to further nephron loss and disease progression. However, the mechanisms that regulate this degenerative process in the kidney are unknown. METHODS: We combined in vitro, in vivo, and organ-on-chip approaches to identify the RE1-silencing transcription factor (REST), a repressor of neuronal genes during embryonic development, as a central regulator of podocyte adaptation to injury and aging. RESULTS: Mice with a specific deletion of REST in podocytes exhibit albuminuria, podocyte apoptosis, and glomerulosclerosis during aging, and exhibit increased vulnerability to renal injury. This phenotype is mediated, in part, by the effects of REST on the podocyte cytoskeleton that promote resistance to mechanical stressors and augment podocyte survival. Finally, REST expression is upregulated in human podocytes during aging, consistent with a conserved mechanism of stress resistance. CONCLUSIONS: These results suggest REST protects the kidney from injury and degeneration during aging, with potentially important therapeutic implications.


Assuntos
Adaptação Fisiológica/genética , Envelhecimento/fisiologia , Podócitos/patologia , Podócitos/fisiologia , Proteínas Repressoras/genética , Estresse Fisiológico/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Albuminúria/genética , Animais , Apoptose/genética , Linhagem Celular , Sobrevivência Celular , Citoesqueleto/fisiologia , Regulação da Expressão Gênica/genética , Homeostase/genética , Humanos , Camundongos , Fenótipo , Proteínas Repressoras/metabolismo , Esclerose , Adulto Jovem
7.
Nucleic Acids Res ; 49(10): e58, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33693773

RESUMO

We present barcoded oligonucleotides ligated on RNA amplified for multiplexed and parallel insitu analyses (BOLORAMIS), a reverse transcription-free method for spatially-resolved, targeted, in situ RNA identification of single or multiple targets. BOLORAMIS was demonstrated on a range of cell types and human cerebral organoids. Singleplex experiments to detect coding and non-coding RNAs in human iPSCs showed a stem-cell signature pattern. Specificity of BOLORAMIS was found to be 92% as illustrated by a clear distinction between human and mouse housekeeping genes in a co-culture system, as well as by recapitulation of subcellular localization of lncRNA MALAT1. Sensitivity of BOLORAMIS was quantified by comparing with single molecule FISH experiments and found to be 11%, 12% and 35% for GAPDH, TFRC and POLR2A, respectively. To demonstrate BOLORAMIS for multiplexed gene analysis, we targeted 96 mRNAs within a co-culture of iNGN neurons and HMC3 human microglial cells. We used fluorescence in situ sequencing to detect error-robust 8-base barcodes associated with each of these genes. We then used this data to uncover the spatial relationship among cells and transcripts by performing single-cell clustering and gene-gene proximity analyses. We anticipate the BOLORAMIS technology for in situ RNA detection to find applications in basic and translational research.


Assuntos
Perfilação da Expressão Gênica/métodos , Hibridização in Situ Fluorescente/métodos , Oligonucleotídeos/química , RNA/análise , Análise de Célula Única/métodos , Animais , Linhagem Celular , Humanos , Camundongos
8.
Nature ; 574(7778): 359-364, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31619788

RESUMO

The mechanisms that extend lifespan in humans are poorly understood. Here we show that extended longevity in humans is associated with a distinct transcriptome signature in the cerebral cortex that is characterized by downregulation of genes related to neural excitation and synaptic function. In Caenorhabditis elegans, neural excitation increases with age and inhibition of excitation globally, or in glutamatergic or cholinergic neurons, increases longevity. Furthermore, longevity is dynamically regulated by the excitatory-inhibitory balance of neural circuits. The transcription factor REST is upregulated in humans with extended longevity and represses excitation-related genes. Notably, REST-deficient mice exhibit increased cortical activity and neuronal excitability during ageing. Similarly, loss-of-function mutations in the C. elegans REST orthologue genes spr-3 and spr-4 elevate neural excitation and reduce the lifespan of long-lived daf-2 mutants. In wild-type worms, overexpression of spr-4 suppresses excitation and extends lifespan. REST, SPR-3, SPR-4 and reduced excitation activate the longevity-associated transcription factors FOXO1 and DAF-16 in mammals and worms, respectively. These findings reveal a conserved mechanism of ageing that is mediated by neural circuit activity and regulated by REST.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/metabolismo , Longevidade , Neurônios/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Envelhecimento , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Caenorhabditis elegans , Fatores de Transcrição Forkhead/metabolismo , Humanos , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Interferência de RNA , Proteínas de Ligação a RNA/metabolismo
9.
Cell Rep ; 26(5): 1112-1127.e9, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30699343

RESUMO

The molecular basis of the earliest neuronal changes that lead to Alzheimer's disease (AD) is unclear. Here, we analyze neural cells derived from sporadic AD (SAD), APOE4 gene-edited and control induced pluripotent stem cells (iPSCs). We observe major differences in iPSC-derived neural progenitor (NP) cells and neurons in gene networks related to neuronal differentiation, neurogenesis, and synaptic transmission. The iPSC-derived neural cells from SAD patients exhibit accelerated neural differentiation and reduced progenitor cell renewal. Moreover, a similar phenotype appears in NP cells and cerebral organoids derived from APOE4 iPSCs. Impaired function of the transcriptional repressor REST is strongly implicated in the altered transcriptome and differentiation state. SAD and APOE4 expression result in reduced REST nuclear translocation and chromatin binding, and disruption of the nuclear lamina. Thus, dysregulation of neural gene networks may set in motion the pathologic cascade that leads to AD.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Redes Reguladoras de Genes , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/metabolismo , Proteínas Repressoras/metabolismo , Idoso , Idoso de 80 Anos ou mais , Peptídeos beta-Amiloides/metabolismo , Apolipoproteínas E/metabolismo , Diferenciação Celular/genética , Reprogramação Celular/genética , Fibroblastos/patologia , Regulação da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Lâmina Nuclear/metabolismo
10.
Cell ; 174(6): 1477-1491.e19, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30146158

RESUMO

Aging is a major risk factor for both genetic and sporadic neurodegenerative disorders. However, it is unclear how aging interacts with genetic predispositions to promote neurodegeneration. Here, we investigate how partial loss of function of TBK1, a major genetic cause for amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) comorbidity, leads to age-dependent neurodegeneration. We show that TBK1 is an endogenous inhibitor of RIPK1 and the embryonic lethality of Tbk1-/- mice is dependent on RIPK1 kinase activity. In aging human brains, another endogenous RIPK1 inhibitor, TAK1, exhibits a marked decrease in expression. We show that in Tbk1+/- mice, the reduced myeloid TAK1 expression promotes all the key hallmarks of ALS/FTD, including neuroinflammation, TDP-43 aggregation, axonal degeneration, neuronal loss, and behavior deficits, which are blocked upon inhibition of RIPK1. Thus, aging facilitates RIPK1 activation by reducing TAK1 expression, which cooperates with genetic risk factors to promote the onset of ALS/FTD.


Assuntos
Apoptose , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Adulto , Idoso , Envelhecimento , Animais , Apoptose/efeitos dos fármacos , Axônios/metabolismo , Comportamento Animal , Encéfalo/citologia , Encéfalo/metabolismo , Células Cultivadas , Humanos , Quinase I-kappa B/metabolismo , Camundongos , Camundongos Knockout , Microglia/citologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Medula Espinal/metabolismo , Estaurosporina/farmacologia , Fator de Necrose Tumoral alfa/farmacologia
12.
Neuron ; 98(6): 1141-1154.e7, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29861287

RESUMO

The apolipoprotein E4 (APOE4) variant is the single greatest genetic risk factor for sporadic Alzheimer's disease (sAD). However, the cell-type-specific functions of APOE4 in relation to AD pathology remain understudied. Here, we utilize CRISPR/Cas9 and induced pluripotent stem cells (iPSCs) to examine APOE4 effects on human brain cell types. Transcriptional profiling identified hundreds of differentially expressed genes in each cell type, with the most affected involving synaptic function (neurons), lipid metabolism (astrocytes), and immune response (microglia-like cells). APOE4 neurons exhibited increased synapse number and elevated Aß42 secretion relative to isogenic APOE3 cells while APOE4 astrocytes displayed impaired Aß uptake and cholesterol accumulation. Notably, APOE4 microglia-like cells exhibited altered morphologies, which correlated with reduced Aß phagocytosis. Consistently, converting APOE4 to APOE3 in brain cell types from sAD iPSCs was sufficient to attenuate multiple AD-related pathologies. Our study establishes a reference for human cell-type-specific changes associated with the APOE4 variant. VIDEO ABSTRACT.


Assuntos
Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Apolipoproteína E4/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Apolipoproteína E3/metabolismo , Apolipoproteína E4/metabolismo , Astrócitos/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Sistemas CRISPR-Cas , Diferenciação Celular , Humanos , Metabolismo dos Lipídeos , Microglia/imunologia , Microglia/metabolismo , Organoides/metabolismo , Fosfoproteínas/metabolismo , Transmissão Sináptica , Transcriptoma
13.
Cell Metab ; 26(4): 592-593, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28978424

RESUMO

The hypothalamus plays a key role in coordinating the physiological changes that underlie mammalian aging. In a recent issue of Nature, Cai and colleagues (2017) shed new light on the mechanism of this effect by providing evidence that hypothalamic stem cells may regulate aging through the release of microRNAs in exosomes.


Assuntos
Envelhecimento , Hipotálamo/fisiologia , MicroRNAs/metabolismo , Células-Tronco Neurais/metabolismo , Animais , Exossomos/metabolismo , Humanos , Hipotálamo/citologia , NF-kappa B/metabolismo , Transdução de Sinais , Estresse Fisiológico
16.
Cell ; 166(1): 13-5, 2016 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-27368096

RESUMO

Mutations in the presenilins that cause familial Alzheimer's disease alter the activity of these proteases to increase generation of an aggregation-prone isoform of the amyloid ß-peptide (Aß). How these mutations do so has been unclear. Sannerud et al. now show that regulation of subcellular localization plays a central role, advancing our understanding of the cell biology of Alzheimer's disease.


Assuntos
Doença de Alzheimer/genética , Presenilinas/genética , Secretases da Proteína Precursora do Amiloide/genética , Peptídeos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Humanos , Transporte Proteico
17.
Science ; 349(6255): aaa5612, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26404840

RESUMO

Cellular senescence is a terminal stress-activated program controlled by the p53 and p16(INK4a) tumor suppressor proteins. A striking feature of senescence is the senescence-associated secretory phenotype (SASP), a pro-inflammatory response linked to tumor promotion and aging. We have identified the transcription factor GATA4 as a senescence and SASP regulator. GATA4 is stabilized in cells undergoing senescence and is required for the SASP. Normally, GATA4 is degraded by p62-mediated selective autophagy, but this regulation is suppressed during senescence, thereby stabilizing GATA4. GATA4 in turn activates the transcription factor NF-κB to initiate the SASP and facilitate senescence. GATA4 activation depends on the DNA damage response regulators ATM and ATR, but not on p53 or p16(INK4a). GATA4 accumulates in multiple tissues, including the aging brain, and could contribute to aging and its associated inflammation.


Assuntos
Envelhecimento/genética , Autofagia/genética , Senescência Celular/genética , Dano ao DNA , Fator de Transcrição GATA4/metabolismo , Inflamação/genética , Proteínas Adaptadoras de Transdução de Sinal , Envelhecimento/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Encéfalo/metabolismo , Ciclo Celular/genética , Células Cultivadas , Inibidor p16 de Quinase Dependente de Ciclina , Fibroblastos , Fator de Transcrição GATA4/genética , Perfilação da Expressão Gênica , Humanos , Interleucina-1alfa/genética , Interleucina-1alfa/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Fenótipo , Regiões Promotoras Genéticas , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/genética , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/metabolismo , Proteína Supressora de Tumor p53/metabolismo
19.
Nature ; 507(7493): 448-54, 2014 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-24670762

RESUMO

Human neurons are functional over an entire lifetime, yet the mechanisms that preserve function and protect against neurodegeneration during ageing are unknown. Here we show that induction of the repressor element 1-silencing transcription factor (REST; also known as neuron-restrictive silencer factor, NRSF) is a universal feature of normal ageing in human cortical and hippocampal neurons. REST is lost, however, in mild cognitive impairment and Alzheimer's disease. Chromatin immunoprecipitation with deep sequencing and expression analysis show that REST represses genes that promote cell death and Alzheimer's disease pathology, and induces the expression of stress response genes. Moreover, REST potently protects neurons from oxidative stress and amyloid ß-protein toxicity, and conditional deletion of REST in the mouse brain leads to age-related neurodegeneration. A functional orthologue of REST, Caenorhabditis elegans SPR-4, also protects against oxidative stress and amyloid ß-protein toxicity. During normal ageing, REST is induced in part by cell non-autonomous Wnt signalling. However, in Alzheimer's disease, frontotemporal dementia and dementia with Lewy bodies, REST is lost from the nucleus and appears in autophagosomes together with pathological misfolded proteins. Finally, REST levels during ageing are closely correlated with cognitive preservation and longevity. Thus, the activation state of REST may distinguish neuroprotection from neurodegeneration in the ageing brain.


Assuntos
Envelhecimento/metabolismo , Doença de Alzheimer/metabolismo , Estresse Oxidativo , Proteínas Repressoras/metabolismo , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/genética , Envelhecimento/patologia , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/toxicidade , Animais , Autofagia , Encéfalo/citologia , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas de Caenorhabditis elegans/metabolismo , Morte Celular/genética , Núcleo Celular/metabolismo , Imunoprecipitação da Cromatina , Cognição , Disfunção Cognitiva/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Regulação da Expressão Gênica , Humanos , Doença por Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/patologia , Longevidade , Camundongos , Neurônios/citologia , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/metabolismo , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Fagossomos , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Fatores de Transcrição/metabolismo , Regulação para Cima , Via de Sinalização Wnt , Adulto Jovem
20.
J Cell Biol ; 203(3): 457-70, 2013 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-24217620

RESUMO

Histone demethylation is known to regulate transcription, but its role in other processes is largely unknown. We report a role for the histone demethylase LSD1/KDM1A in the DNA damage response (DDR). We show that LSD1 is recruited directly to sites of DNA damage. H3K4 dimethylation, a major substrate for LSD1, is reduced at sites of DNA damage in an LSD1-dependent manner. The E3 ubiquitin ligase RNF168 physically interacts with LSD1 and we find this interaction to be important for LSD1 recruitment to DNA damage sites. Although loss of LSD1 did not affect the initial formation of pH2A.X foci, 53BP1 and BRCA1 complex recruitment were reduced upon LSD1 knockdown. Mechanistically, this was likely a result of compromised histone ubiquitylation preferentially in late S/G2. Consistent with a role in the DDR, knockdown of LSD1 resulted in moderate hypersensitivity to γ-irradiation and increased homologous recombination. Our findings uncover a direct role for LSD1 in the DDR and place LSD1 downstream of RNF168 in the DDR pathway.


Assuntos
Reparo do DNA/genética , Histona Desmetilases/metabolismo , Histonas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Proteína BRCA1/metabolismo , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Metilação de DNA , Células HEK293 , Células HeLa , Histona Desmetilases/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Interferência de RNA , RNA Interferente Pequeno , Tolerância a Radiação , Fase S/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...