Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 68(5): e0166923, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564665

RESUMO

Japan is a country with an approximate 10% prevalence rate of carbapenem-resistant Pseudomonas aeruginosa (CRPA). Currently, a comprehensive overview of the genotype and phenotype patterns of CRPA in Japan is lacking. Herein, we conducted genome sequencing and quantitative antimicrobial susceptibility testing for 382 meropenem-resistant CRPA isolates that were collected from 78 hospitals across Japan from 2019 to 2020. CRPA exhibited susceptibility rates of 52.9%, 26.4%, and 88.0% against piperacillin-tazobactam, ciprofloxacin, and amikacin, respectively, whereas 27.7% of CRPA isolates was classified as difficult-to-treat resistance P. aeruginosa. Of the 148 sequence types detected, ST274 (9.7%) was predominant, followed by ST235 (7.6%). The proportion of urine isolates in ST235 was higher than that in other STs (P = 0.0056, χ2 test). Only 4.1% of CRPA isolates carried the carbapenemase genes: blaGES (2) and blaIMP (13). One ST235 isolate carried the novel blaIMP variant blaIMP-98 in the chromosome. Regarding chromosomal mutations, 87.1% of CRPA isolates possessed inactivating or other resistance mutations in oprD, and 28.8% showed mutations in the regulatory genes (mexR, nalC, and nalD) for the MexAB-OprM efflux pump. Additionally, 4.7% of CRPA isolates carried a resistance mutation in the PBP3-encoding gene ftsI. The findings from this study and other surveillance studies collectively demonstrate that CRPA exhibits marked genetic diversity and that its multidrug resistance in Japan is less prevailed than in other regions. This study contributes a valuable data set that addresses a gap in genotype/phenotype information regarding CRPA in the Asia-Pacific region, where the epidemiological background markedly differs between regions.


Assuntos
Antibacterianos , Proteínas de Bactérias , Carbapenêmicos , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas , Pseudomonas aeruginosa , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/isolamento & purificação , Japão/epidemiologia , Carbapenêmicos/farmacologia , Antibacterianos/farmacologia , Humanos , Proteínas de Bactérias/genética , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/epidemiologia , Infecções por Pseudomonas/tratamento farmacológico , beta-Lactamases/genética , Genoma Bacteriano/genética , Combinação Piperacilina e Tazobactam/uso terapêutico , Combinação Piperacilina e Tazobactam/farmacologia , Sequenciamento Completo do Genoma , Meropeném/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Amicacina/farmacologia
2.
Microb Genom ; 10(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38376378

RESUMO

Monitoring antibiotic-resistant bacteria (ARB) and understanding the effects of antimicrobial drugs on the human microbiome and resistome are crucial for public health. However, no study has investigated the association between antimicrobial treatment and the microbiome-resistome relationship in long-term care facilities, where residents act as reservoirs of ARB but are not included in the national surveillance for ARB. We conducted shotgun metagenome sequencing of oral and stool samples from long-term care facility residents and explored the effects of antimicrobial treatment on the human microbiome and resistome using two types of comparisons: cross-sectional comparisons based on antimicrobial treatment history in the past 6 months and within-subject comparisons between stool samples before, during and 2-4 weeks after treatment using a single antimicrobial drug. Cross-sectional analysis revealed two characteristics in the group with a history of antimicrobial treatment: the archaeon Methanobrevibacter was the only taxon that significantly increased in abundance, and the total abundance of antimicrobial resistance genes (ARGs) was also significantly higher. Within-subject comparisons showed that taxonomic diversity did not decrease during treatment, suggesting that the effect of the prescription of a single antimicrobial drug in usual clinical treatment on the gut microbiota is likely to be smaller than previously thought, even among very elderly people. Additional analysis of the detection limit of ARGs revealed that they could not be detected when contig coverage was <2.0. This study is the first to report the effects of usual antimicrobial treatments on the microbiome and resistome of long-term care facility residents.


Assuntos
Anti-Infecciosos , Microbiota , Idoso , Humanos , Antagonistas de Receptores de Angiotensina , Estudos Transversais , Assistência de Longa Duração , Inibidores da Enzima Conversora de Angiotensina , DNA , Análise de Sequência de DNA
3.
Microbiol Spectr ; 12(1): e0258923, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38078722

RESUMO

IMPORTANCE: Despite increasing reports, class A ß-lactamases of environmental bacteria remain very poorly characterized, with limited understanding of their transmission patterns. To address this knowledge gap, we focused on a recently designated GMA family ß-lactamase gene, bla GMA-1, found in marine bacterial genera such as Vibrio. This study shows that gammaproteobacterial mobile class A ß-lactamase is specialized for penicillin degradation, and bla GMA-1 is frequently linked to strand-biased circularizing integrative elements (SEs) in sequences in the RefSeq/GenBank database. Evidence for the implication of SEs in ß-lactamase environmental transmission provides insights for future surveillance studies of antimicrobial resistance genes in human clinical settings.


Assuntos
Antibacterianos , beta-Lactamases , Humanos , beta-Lactamases/genética , beta-Lactamases/metabolismo , Antibacterianos/farmacologia , Genes Bacterianos , Testes de Sensibilidade Microbiana
5.
One Health ; 16: 100559, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37363238

RESUMO

Mycobacterium avium subsp. hominissuis (MAH) is one of the most prevalent mycobacteria causing non-tuberculous mycobacterial disease in humans and animals. Of note, MAH is a major cause of mycobacterial granulomatous mesenteric lymphadenitis outbreaks in pig populations. To determine the precise source of infection of MAH in a pig farm and to clarify the epidemiological relationship among pig, human and environmental MAH lineages, we collected 50 MAH isolates from pigs reared in Japan and determined draft genome sequences of 30 isolates. A variable number of tandem repeat analysis revealed that most pig MAH isolates in Japan were closely related to North American, European and Russian human isolates but not to those from East Asian human and their residential environments. Historical recombination analysis revealed that most pig isolates could be classified into SC2/4 and SC3, which contain MAH isolated from pig, European human and environmental isolates. Half of the isolates in SC2/4 had many recombination events with MAH lineages isolated from humans in East Asia. To our surprise, four isolates belonged to a new lineage (SC5) in the global MAH population. Members of SC5 had few footprints of inter-lineage recombination in the genome, and carried 80 unique genes, most of which were located on lineage specific-genomic islands. Using unique genetic features, we were able to trace the putative transmission route via their host pigs. Together, we clarify the possibility of species-specificity of MAH in addition to local adaptation. Our results highlight two transmission routes of MAH, one exposure on pig farms from the environment and the other via pig movement. Moreover, our study also warns that the evolution of MAH in pigs is influenced by MAH from patients and their residential environments, even if the MAH are genetically distinct.

6.
Mob DNA ; 14(1): 7, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237359

RESUMO

BACKGROUND: The strand-biased circularizing integrative elements (SEs) are putatively non-mobilizable integrative elements for transmitting antimicrobial resistance genes. The transposition mode and the prevalence of SEs in prokaryotes remain vague. RESULTS: To corroborate the transposition mode and the prevalence of SEs, hypothetical transposition intermediates of an SE were searched for in genomic DNA fractions of an SE host. Then, the SE core genes were defined based on gene knockout experiments, and the synteny blocks of their distant homologs were searched for in the RefSeq complete genome sequence database using PSI-BLAST. A genomic DNA fractionation experiment revealed that SE copies are present in a double-stranded nicked circular form in vivo. Operonic structure of three conserved coding sequences (intA, tfp, intB) and srap located at the left end of SEs were identified as essential for attL × attR recombination. The synteny blocks of tfp and srap homologs were detected in 3.6% of the replicons of Gammaproteobacteria but not in other taxa, implying that SE movement is host-dependent. SEs have been discovered most frequently in the orders Vibrionales (19% of replicons), Pseudomonadales (18%), Alteromonadales (17%), and Aeromonadales (12%). Genomic comparisons revealed 35 new SE members with identifiable termini. SEs are present at 1 to 2 copies per replicon and have a median length of 15.7 kb. Three newly identified SE members carry antimicrobial resistance genes, like tmexCD-toprJ, mcr-9, and blaGMA-1. Further experiments validated that three new SE members possess the strand-biased attL × attR recombination activity. CONCLUSIONS: This study suggested that transposition intermediates of SEs are double-stranded circular DNA. The main hosts of SEs are a subset of free-living Gammaproteobacteria; this represents a rather narrow host range compared to those of mobile DNA element groups discovered to date. As the host range, genetic organization, and movements are unique among the mobile DNA elements, SEs provide a new model system for host-mobile DNA element coevolution studies.

7.
PLoS One ; 17(8): e0271627, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35917316

RESUMO

The exchange of antimicrobial resistance (AMR) genes between aquaculture and terrestrial microbial populations has emerged as a serious public health concern. However, the nature of the mobile genetic elements in marine bacteria is poorly documented. To gain insight into the genetic mechanisms underlying AMR gene transfer from marine bacteria, we mated a multidrug-resistant Vibrio alfacsensis strain with an Escherichia coli strain, and then determined the complete genome sequences of the donor and the transconjugant strains. Sequence analysis revealed a conjugative multidrug resistance plasmid in the donor strain, which was integrated into the chromosome of the recipient. The plasmid backbone in the transconjugant chromosome was flanked by two copies of a 7.1 kb unclassifiable integrative element harboring a ß-lactamase gene. The 7.1 kb element and the previously reported element Tn6283 share four coding sequences, two of which encode the catalytic R-H-R-Y motif of tyrosine recombinases. Polymerase chain reaction and sequencing experiments revealed that these elements generate a circular copy of one specific strand without leaving an empty site on the donor molecule, in contrast to the movement of integron gene cassettes or ICE/IMEs discovered to date. These elements are termed SEs (strand-biased circularizing integrative elements): SE-6945 (the 7.1 kb element) and SE-6283 (Tn6283). The copy number and location of SE-6945 in the chromosome affected the antibiotic resistance levels of the transconjugants. SEs were identified in the genomes of other Vibrio species. Overall, these results suggest that SEs are involved in the spread of AMR genes among marine bacteria.


Assuntos
Antibacterianos , Vibrio , Antibacterianos/farmacologia , Conjugação Genética , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Transferência Genética Horizontal , Plasmídeos/genética , Vibrio/genética
8.
Microb Genom ; 7(11)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34846284

RESUMO

Genome-wide association studies (GWASs) can reveal genetic variations associated with a phenotype in the absence of any hypothesis of candidate genes. The problem of false-positive sites linked with the responsible site might be bypassed in bacteria with a high homologous recombination rate, such as Helicobacter pylori, which causes gastric cancer. We conducted a small-sample GWAS (125 gastric cancer cases and 115 controls) followed by prediction of gastric cancer and control (duodenal ulcer) H. pylori strains. We identified 11 single nucleotide polymorphisms (eight amino acid changes) and three DNA motifs that, combined, allowed effective disease discrimination. They were often informative of the underlying molecular mechanisms, such as electric charge alteration at the ligand-binding pocket, alteration in subunit interaction, and mode-switching of DNA methylation. We also identified three novel virulence factors/oncoprotein candidates. These results provide both defined targets for further informatic and experimental analyses to gain insights into gastric cancer pathogenesis and a basis for identifying a set of biomarkers for distinguishing these H. pylori-related diseases.


Assuntos
Úlcera Duodenal , Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Úlcera Duodenal/complicações , Úlcera Duodenal/genética , Úlcera Duodenal/microbiologia , Estudo de Associação Genômica Ampla , Infecções por Helicobacter/genética , Infecções por Helicobacter/microbiologia , Helicobacter pylori/genética , Humanos , Proteínas Oncogênicas/genética , Polimorfismo de Nucleotídeo Único , Neoplasias Gástricas/complicações , Neoplasias Gástricas/genética , Neoplasias Gástricas/microbiologia
9.
GigaByte ; 2021: gigabyte33, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36824340

RESUMO

Mycobacterium avium subsp. hominissuis (MAH) is one of the most important agents causing non-tuberculosis mycobacterial infection in humans and pigs. There have been advances in genome analysis of MAH from human isolates, but studies of isolates from pigs are limited despite its potential source of infection to human. Here, we obtained 30 draft genome sequences of MAH from pigs reared in Japan. The 30 draft genomes were 4,848,678-5,620,788 bp in length, comprising 4652-5388 coding genes and 46-75 (median: 47) tRNAs. All isolates had restriction modification-associated genes and 185-222 predicted virulence genes. Two isolates had tRNA arrays and one isolate had a clustered regularly interspaced short palindromic repeat (CRISPR) region. Our results will be useful for evaluation of the ecology of MAH by providing a foundation for genome-based epidemiological studies.

11.
Front Microbiol ; 11: 1628, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32765461

RESUMO

Epigenetic DNA base methylation plays important roles in gene expression regulation. We here describe a gene expression regulation network consisting of many DNA methyltransferases each frequently changing its target sequence-specificity. Our object Helicobacter pylori, a bacterium responsible for most incidence of stomach cancer, carries a large and variable repertoire of sequence-specific DNA methyltransferases. By creating a dozen of single-gene knockout strains for the methyltransferases, we revealed that they form a network controlling methylome, transcriptome and adaptive phenotype sets. The methyltransferases interact with each other in a hierarchical way, sometimes regulated positively by one methyltransferase but negatively with another. Motility, oxidative stress tolerance and DNA damage repair are likewise regulated by multiple methyltransferases. Their regulation sometimes involves translation start and stop codons suggesting coupling of methylation, transcription and translation. The methyltransferases frequently change their sequence-specificity through gene conversion of their target recognition domain and switch their target sets to remodel the network. The emerging picture of a metamorphosing gene regulation network, or firework, consisting of epigenetic systems ever-changing their specificity in search for adaptation, provides a new paradigm in understanding global gene regulation and adaptive evolution.

12.
Microbiology (Reading) ; 166(6): 531-545, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32310743

RESUMO

Sphingobium japonicum strain UT26, whose γ-hexachlorocyclohexane-degrading ability has been studied in detail, is a typical aerobic and heterotrophic bacterium that needs organic carbon sources for its growth, and cannot grow on a minimal salt agar medium prepared without adding any organic carbon sources. Here, we isolated a mutant of UT26 with the ability to grow to visible state on such an oligotrophic medium from a transposon-induced mutant library. This high-yield growth under oligotrophic conditions (HYGO) phenotype was CO2-dependent and accompanied with CO2 incorporation. In the HYGO mutant, a transposon was inserted just upstream of the putative Zn-dependent alcohol dehydrogenase (ADH) gene (adhX) so that the adhX gene was constitutively expressed, probably by the transposon-derived promoter. The adhX-deletion mutant (UT26DAX) harbouring a plasmid carrying the adhX gene under the control of a constitutive promoter exhibited the HYGO phenotype. Moreover, the HYGO mutants spontaneously emerged among the UT26-derived hypermutator strain cells, and adhX was highly expressed in these HYGO mutants, while no HYGO mutant appeared among UT26DAX-derived hypermutator strain cells, indicating the necessity of adhX for the HYGO phenotype. His-tagged AdhX that was expressed in Escherichia coli and purified to homogeneity showed ADH activity towards methanol and other alcohols. Mutagenesis analysis of the adhX gene indicated a correlation between the ADH activity and the HYGO phenotype. These results demonstrated that the constitutive expression of an adhX-encoding protein with ADH activity in UT26 leads to the CO2-dependent HYGO phenotype. Identical or nearly identical adhX orthologues were found in other sphingomonad strains, and most of them were located on plasmids, suggesting that the adhX-mediated HYGO phenotype may be an important adaptation strategy to oligotrophic environments among sphingomonads.


Assuntos
Álcool Desidrogenase/metabolismo , Proteínas de Bactérias/metabolismo , Dióxido de Carbono/metabolismo , Sphingomonadaceae/crescimento & desenvolvimento , Sphingomonadaceae/metabolismo , Álcool Desidrogenase/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Processos Heterotróficos , Hexaclorocicloexano/metabolismo , Mutação , Fenótipo , Plasmídeos/genética , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Sphingomonadaceae/enzimologia , Sphingomonadaceae/genética
13.
Mol Biol Evol ; 37(6): 1563-1576, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32027370

RESUMO

Bacterial plasmids substantially contribute to the rapid spread of antibiotic resistance, which is a crisis in healthcare today. Coevolution of plasmids and their hosts promotes this spread of resistance by ameliorating the cost of plasmid carriage. However, our knowledge of plasmid-bacteria coevolution is solely based on studies done in well-mixed liquid cultures, even though biofilms represent the main way of bacterial life on Earth and are responsible for most infections. The spatial structure and the heterogeneity provided by biofilms are known to lead to increased genetic diversity as compared with well-mixed liquids. Therefore, we expect that growth in this complex environment could affect the evolutionary trajectories of plasmid-host dyads. We experimentally evolved Shewanella oneidensis MR-1 with plasmid pBP136Gm in biofilms and chemostats and sequenced the genomes of clones and populations. Biofilm populations not only maintained a higher diversity of mutations than chemostat populations but contained a few clones with markedly more persistent plasmids that evolved via multiple distinct trajectories. These included the acquisition of a putative toxin-antitoxin transposon by the plasmid and chromosomal mutations. Some of these genetic changes resulted in loss of plasmid transferability or decrease in plasmid cost. Growth in chemostats led to a higher proportion of variants with decreased plasmid persistence, a phenomenon not detected in biofilms. We suggest that the presence of more stable plasmid-host dyads in biofilms reflects higher genetic diversity and possibly unknown selection pressures. Overall, this study underscores the importance of the mode of growth in the evolution of antibiotic-resistant bacteria.


Assuntos
Biofilmes , Evolução Biológica , Plasmídeos , Shewanella/genética , Sequenciamento Completo do Genoma
14.
BMC Genomics ; 20(1): 752, 2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31623552

RESUMO

BACKGROUND: The rapid identification of lineage remains a challenge in the genotyping of clinical isolates of recombinogenic pathogens. The chromosome of Mycobacterium avium subsp. hominissuis (MAH), an agent of Mycobacterium avium complex (MAC) lung disease, is often mosaic and is composed of chromosomal segments originating from different lineages. This makes it difficult to infer the MAH lineage in a simple experimental set-up. To overcome this difficulty, we sought to identify chromosomal marker genes containing lineage-specific alleles by genome data mining. RESULTS: We conducted genetic population structure analysis, phylogenetic analysis, and a survey of historical recombination using data from 125 global MAH isolates. Six MAH lineages (EA1, EA2, SC1, SC2, SC3, and SC4) were identified in the current dataset. One P-450 gene (locus_tag MAH_0788/MAV_0940) in the recombination-cold region was found to have multiple alleles that could discriminate five lineages. By combining the information about allele type from one additional gene, the six MAH lineages as well as other M. avium subspecies were distinguishable. A recombination-cold region of 116 kb contains an insertion hotspot and is flanked by a mammalian cell-entry protein operon where allelic variants have previously been reported to occur. Hence, we speculate that the acquisition of lineage- or strain-specific insertions has introduced homology breaks in the chromosome, thereby reducing the chance of interlineage recombination. CONCLUSIONS: The allele types of the newly identified marker genes can be used to predict major lineages of M. avium. The single nucleotide polymorphism typing approach targeting multiallelic loci in recombination-cold regions will facilitate the epidemiological study of MAC, and may also be useful for equivalent studies of other nontuberculous mycobacteria potentially carrying mosaic genomes.


Assuntos
Genes Bacterianos/genética , Epidemiologia Molecular/métodos , Infecção por Mycobacterium avium-intracellulare/microbiologia , Mycobacterium/genética , Alelos , Animais , Mapeamento Cromossômico , Ligação Genética , Variação Genética , Genética Populacional , Genoma Bacteriano/genética , Genótipo , Humanos , Mycobacterium/classificação , Mycobacterium/isolamento & purificação , Infecção por Mycobacterium avium-intracellulare/epidemiologia , Filogenia , Recombinação Genética
15.
Infect Genet Evol ; 74: 103923, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31207401

RESUMO

Japan reportedly has high incidence rate of nontuberculous mycobacterial lung disease (14.7 cases per 100,000 person in 2014). In Japan, the most common etiology is Mycobacterium avium subsp. hominissuis (MAH). MAH is a typical inhabitant of the environment, especially bathrooms, which are considered as a potential source of infection. To corroborate this hypothesis, we determined the detection rate of MAH in bathrooms of healthy volunteers by an ordinary culture method and we analyzed the genetic relatedness of these isolates with those from patients and other sources. We collected swabs of bathtub inlets, showerheads, bathroom drains, and shower water from 180 residences throughout Japan. The overall MAH detection rate was 16.1%, but the rate varied among regions: it was high in Kanto (9/34, 26.5%) and Kinki (9/33, 27.3%), but low in Kyushu (0/11, 0%), Tohoku (1/23, 4.3%), and Hokkaido (2/23, 8.7%). MAH was detected primarily in bathtub inlet samples (25 out of 170 residences). Variable numbers of tandem repeats (VNTR) analysis was used to examine the genetic relatedness of 57 MAH isolates from bathrooms of the healthy volunteers with human clinical isolates. A minimum spanning tree generated on the basis of the VNTR data indicated that isolates from the bathrooms of the healthy volunteers had a high degree of genetic relatedness with those from Japanese patients, bathrooms of patients, and river water, but not with those from Russian patients and Japanese pigs. These results showed that bathtub inlets in Japan provide an environmental niche for MAH and suggest that bathrooms are one of the important infection sources of MAH in Japan. Understanding country-specific lifestyle habits, such as bathing in Japan, as well as the genetic diversity of MAH, will help in elucidating the sources of this pathogen.


Assuntos
Pneumopatias/microbiologia , Repetições Minissatélites , Mycobacterium avium/classificação , Rios/microbiologia , DNA Bacteriano/genética , Voluntários Saudáveis , Humanos , Japão , Mycobacterium avium/genética , Mycobacterium avium/isolamento & purificação , Filogeografia , Federação Russa , Microbiologia do Solo , Banheiros , Microbiologia da Água
16.
Sci Adv ; 5(4): eaav9492, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30993206

RESUMO

Wet-processable and highly conductive polymers are promising candidates for key materials in organic electronics. Poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) is commercially available as a water dispersion of colloidal particles but has some technical issues with PSS. Here, we developed a novel fully soluble self-doped PEDOT (S-PEDOT) with an electrical conductivity as high as 1089 S cm-1 without additives (solvent effect). Our results indicate that the molecular weight of S-PEDOT is the critical parameter for increasing the number of nanocrystals, corresponding to the S-PEDOT crystallites evaluated by x-ray diffraction and conductive atomic force microscopic analyses as having high electrical conductivity, which reduced both the average distance between adjacent nanocrystals and the activation energy for the hopping of charge carriers, leading to the highest bulk conductivity.

17.
Comput Struct Biotechnol J ; 17: 70-81, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30619542

RESUMO

Plasmids are genetic parasites of microorganisms. The genomes of naturally occurring plasmids are expected to be polished via natural selection to achieve long-term persistence in the microbial cell population. However, plasmid genomes are extremely diverse, and the rules governing plasmid genomes are not fully understood. Therefore, computationally designing plasmid genomes optimized for model and nonmodel organisms remains challenging. Here, we summarize current knowledge of the plasmid genome organization and the factors that can affect plasmid persistence, with the aim of constructing synthetic plasmids for use in gram-negative bacteria. Then, we introduce publicly available resources, plasmid data, and bioinformatics tools that are useful for computational plasmid design.

18.
PLoS One ; 13(6): e0198613, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29879198

RESUMO

The capture of antimicrobial resistance genes (ARGs) by mobile genetic elements (MGEs) plays a critical role in resistance acquisition for human-associated bacteria. Although aquaculture environments are recognized as important reservoirs of ARGs, intra- and intercellular mobility of MGEs discovered in marine organisms is poorly characterized. Here, we show a new pattern of interspecies ARGs transfer involving a 'non-conjugative' integrative element. To identify active MGEs in a Vibrio ponticus isolate, we conducted whole-genome sequencing of a transconjugant obtained by mating between Escherichia coli and Vibrio ponticus. This revealed integration of a plasmid (designated pSEA1) into the chromosome, consisting of a self-transmissible plasmid backbone of the MOBH group, ARGs, and a 13.8-kb integrative element Tn6283. Molecular genetics analysis suggested a two-step gene transfer model. First, Tn6283 integrates into the recipient chromosome during suicidal plasmid transfer, followed by homologous recombination between the Tn6283 copy in the chromosome and that in the newly transferred pSEA1. Tn6283 is unusual among integrative elements in that it apparently does not encode transfer function and its excision barely generates unoccupied donor sites. Thus, its movement is analogous to the transposition of insertion sequences rather than to that of canonical integrative and conjugative elements. Overall, this study reveals the presence of a previously unrecognized type of MGE in a marine organism, highlighting diversity in the mode of interspecies gene transfer.


Assuntos
Organismos Aquáticos/fisiologia , Farmacorresistência Bacteriana/genética , Escherichia coli/fisiologia , Fatores R/genética , Vibrio/fisiologia , Aquicultura , Organismos Aquáticos/efeitos dos fármacos , Organismos Aquáticos/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Transferência Genética Horizontal , Vibrio/efeitos dos fármacos , Vibrio/genética , Sequenciamento Completo do Genoma
19.
Sci Rep ; 8(1): 5550, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29615803

RESUMO

Integrative and conjugative elements (ICEs) comprise ubiquitous large mobile regions in prokaryotic chromosomes that transmit vertically to daughter cells and transfer horizontally to distantly related lineages. Their evolutionary success originates in maximized combined ICE-host fitness trade-offs, but how the ICE impacts on the host metabolism and physiology is poorly understood. Here we investigate global changes in the host genetic network and physiology of Pseudomonas putida with or without an integrated ICEclc, a model ICE widely distributed in proteobacterial genomes. Genome-wide gene expression differences were analyzed by RNA-seq using exponentially growing or stationary phase-restimulated cultures on 3-chlorobenzoate, an aromatic compound metabolizable thanks to specific ICEclc-located genes. We found that the presence of ICEclc imposes a variety of changes in global pathways such as cell cycle and amino acid metabolism, which were more numerous in stationary-restimulated than exponential phase cells. Unexpectedly, ICEclc stimulates cellular motility and leads to more rapid growth on 3-chlorobenzoate than cells carrying only the integrated clc genes. ICEclc also concomitantly activates the P. putida Pspu28-prophage, but this in itself did not provoke measurable fitness effects. ICEclc thus interferes in a number of cellular pathways, inducing both direct benefits as well as indirect costs in P. putida.


Assuntos
Proteínas de Bactérias/genética , Conjugação Genética , Regulação Bacteriana da Expressão Gênica , Sequências Repetitivas Dispersas , Pseudomonas putida/genética , Pseudomonas putida/fisiologia , Transcriptoma , Genoma Bacteriano , Ilhas Genômicas , Prófagos/genética
20.
Genome Biol Evol ; 9(9): 2403-2417, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28957464

RESUMO

Mycobacterium avium subsp. hominissuis (MAH) is one of the most common nontuberculous mycobacterial species responsible for chronic lung disease in humans. Despite increasing worldwide incidence, little is known about the genetic mechanisms behind the population evolution of MAH. To elucidate the local adaptation mechanisms of MAH, we assessed genetic population structure, the mutual homologous recombination, and gene content for 36 global MAH isolates, including 12 Japanese isolates sequenced in the present study. We identified five major MAH lineages and found that extensive mutual homologous recombination occurs among them. Two lineages (MahEastAsia1 and MahEastAsia2) were predominant in the Japanese isolates. We identified alleles unique to these two East Asian lineages in the loci responsible for trehalose biosynthesis (treS and mak) and in one mammalian cell entry operon, which presumably originated from as yet undiscovered mycobacterial lineages. Several genes and alleles unique to East Asian strains were located in the fragments introduced via recombination between East Asian lineages, suggesting implication of recombination in local adaptation. These patterns of MAH genomes are consistent with the signature of distribution conjugative transfer, a mode of sexual reproduction reported for other mycobacterial species.


Assuntos
Adaptação Fisiológica , Evolução Molecular , Mycobacterium avium/genética , Alelos , Animais , Recombinação Homóloga , Humanos , Pulmão/microbiologia , Infecções por Mycobacterium/microbiologia , Mycobacterium avium/isolamento & purificação , Óperon , Polimorfismo Genético , Suínos , Trealose/genética , Trealose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...