Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 1(1): 4-6, 2001 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-11703916

RESUMO

Two recent papers in Cell have shown that a regulatory loop involving the WUSCHEL, AGAMOUS, and LEAFY genes controls the switch from continuous meristem growth to flower development in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis/crescimento & desenvolvimento , Meristema/crescimento & desenvolvimento , Fatores de Transcrição , Proteína AGAMOUS de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas/fisiologia , Proteínas de Homeodomínio/genética , Proteínas de Plantas/genética
2.
Plant J ; 26(4): 385-94, 2001 May.
Artigo em Inglês | MEDLINE | ID: mdl-11439126

RESUMO

In Arabidopsis, the closely related APETALA1 (AP1) and CAULIFLOWER (CAL) MADS-box genes share overlapping roles in promoting flower meristem identity. Later in flower development, the AP1 gene is required for normal development of sepals and petals. Studies of MADS-domain proteins in diverse species have shown that they often function as heterodimers or in larger ternary complexes, suggesting that additional proteins may interact with AP1 and CAL during flower development. To identify proteins that may interact with AP1 and CAL, we used the yeast two-hybrid assay. Among the five MADS-box genes identified in this screen, the SEPALLATA3 (SEP3) gene was chosen for further study. Mutations in the SEP3 gene, as well as SEP3 antisense plants that have a reduction in SEP3 RNA, display phenotypes that closely resemble intermediate alleles of AP1. Furthermore, the early flowering phenotype of plants constitutively expressing AP1 is significantly enhanced by constitutive SEP3 expression. Taken together, these studies suggest that SEP3 interacts with AP1 to promote normal flower development.


Assuntos
Proteínas de Arabidopsis , Proteínas de Homeodomínio/metabolismo , Proteínas de Domínio MADS/metabolismo , Meristema/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Alelos , Arabidopsis , Proteínas de Homeodomínio/genética , Proteínas de Domínio MADS/genética , Meristema/anatomia & histologia , Morfogênese , Mutação , Proteínas de Plantas/genética , Brotos de Planta/anatomia & histologia , Plantas Geneticamente Modificadas , Ligação Proteica , Proteínas Recombinantes/genética , Fatores de Transcrição/genética , Técnicas do Sistema de Duplo-Híbrido
3.
Plant Cell ; 13(4): 739-53, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11283333

RESUMO

Proper development of petals and stamens in Arabidopsis flowers requires the activities of APETALA3 (AP3) and PISTILLATA (PI), whose transcripts can be detected in the petal and stamen primordia. Localized expression of AP3 and PI requires the activities of at least three genes: APETALA1 (AP1), LEAFY (LFY), and UNUSUAL FLORAL ORGANS (UFO). It has been proposed that UFO provides spatial cues and that LFY specifies competence for AP3 and PI expression in the developing flower. To understand the epistatic relationship among AP1, LFY, and UFO in regulating AP3 and PI expression, we generated two versions of AP1 that have strong transcriptional activation potential. Genetic and molecular analyses of transgenic plants expressing these activated AP1 proteins show that the endogenous AP1 protein acts largely as a transcriptional activator in vivo and that AP1 specifies petals by regulating the spatial domains of AP3 and PI expression through UFO.


Assuntos
Proteínas de Arabidopsis , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Proteínas de Domínio MADS , Proteínas de Plantas/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Homeodomínio/metabolismo , Hibridização In Situ , Mutação , Proteínas de Plantas/metabolismo , Estruturas Vegetais/genética , Estruturas Vegetais/fisiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Nat Rev Genet ; 2(3): 186-95, 2001 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11256070

RESUMO

The function of MADS-box genes in flower and fruit development has been uncovered at a rapid pace over the past decade. Evolutionary biologists can now analyse the expression pattern of MADS-box genes during the development of different plant species, and study the homology of body parts and the evolution of body plans. These studies have shown that floral development is conserved among divergent species, and indicate that the basic mechanism of floral patterning might have evolved in an ancient flowering plant.


Assuntos
DNA de Plantas/genética , Proteínas de Ligação a DNA/genética , Evolução Molecular , Genes de Plantas , Desenvolvimento Vegetal , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Animais , Regulação da Expressão Gênica no Desenvolvimento , Genes Reguladores , Proteínas de Domínio MADS , Morfogênese/genética , Filogenia , Plantas/genética , Sequências Reguladoras de Ácido Nucleico
5.
Curr Biol ; 11(3): 182-4, 2001 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-11231153

RESUMO

More than 200 years ago, Goethe proposed that each of the distinct flower organs represents a modified leaf [1]. Support for this hypothesis has come from genetic studies, which have identified genes required for flower organ identity. These genes have been incorporated into the widely accepted ABC model of flower organ identity, a model that appears generally applicable to distantly related eudicots as well as monocot plants. Strikingly, triple mutants lacking the ABC activities produce leaves in place of flower organs, and this finding demonstrates that these genes are required for floral organ identity [2]. However, the ABC genes are not sufficient for floral organ identity since ectopic expression of these genes failed to convert vegetative leaves into flower organs. This finding suggests that one or more additional factors are required [3, 4]. We have recently shown that SEPALLATA (SEP) represents a new class of floral organ identity genes since the loss of SEP activity results in all flower organs developing as sepals [5]. Here we show that the combined action of the SEP genes, together with the A and B genes, is sufficient to convert leaves into petals.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Arabidopsis/genética , Sequência de Bases , Primers do DNA , Genes de Plantas
6.
Plant J ; 24(4): 457-66, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11115127

RESUMO

MADS-box genes encode transcriptional regulators involved in diverse aspects of plant development. Here we describe the cloning and mRNA spatio-temporal expression patterns of five new MADS-box genes from Arabidopsis: AGL16, AGL18, AGL19, AGL27 and AGL31. These genes will probably become important molecular tools for both evolutionary and functional analyses of vegetative structures. We mapped our data and previous expression patterns onto a new MADS-box phylogeny. These analyses suggest that the evolution of the MADS-box family has involved a rapid and simultaneous functional diversification in vegetative as well as reproductive structures. The hypothetical ancestral genes had broader expression patterns than more derived ones, which have been co-opted for putative specialized functions as suggested by their expression patterns. AGL27 and AGL31, which are closely related to the recently described flowering-time gene FLC (previously AGL25), are expressed in most plant tissues. AGL19 is specifically expressed in the outer layers of the root meristem (lateral root cap and epidermis) and in the central cylinder cells of mature roots. AGL18, which is most similar in sequence to the embryo-expressed AGL15 gene, is expressed in the endosperm and in developing male and female gametophytes, suggesting a role for AGL18 that is distinct from previously characterized MADS-box genes. Finally, AGL16 RNA accumulates in leaf guard cells and trichomes. Our new phylogeny reveals seven new monophyletic clades of MADS-box sequences not specific to flowers, suggesting that complex regulatory networks involving several MADS-box genes, similar to those that control flower development, underlie development of vegetative structures.


Assuntos
Proteínas de Ligação a DNA/genética , Plantas/genética , Fatores de Transcrição/genética , Proteínas de Arabidopsis , Mapeamento Cromossômico , Clonagem Molecular , DNA Complementar/química , DNA Complementar/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas , Raízes de Plantas/citologia , Raízes de Plantas/genética , Pólen/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo , Sementes/genética , Análise de Sequência de DNA , Distribuição Tecidual
7.
Science ; 289(5480): 779-82, 2000 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-10926540

RESUMO

LEAFY (LFY) and APETALA1 (AP1) encode unrelated transcription factors that activate overlapping sets of homeotic genes in Arabidopsis flowers. Sector analysis and targeted expression in transgenic plants were used to study whether LFY and AP1 can participate in cell-cell signaling between and within different layers of the floral meristem. LFY signaled equally well from all layers and had substantial long-range action within layers. Nonautonomous action of LFY was accompanied by movement of the protein to adjacent cells, where it directly activated homeotic target genes. In contrast, AP1 had only limited nonautonomous effects, apparently mediated by downstream genes because activation of early target genes by AP1 was cell-autonomous.


Assuntos
Proteínas de Arabidopsis , Arabidopsis/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas de Plantas/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , DNA Nucleotidiltransferases/genética , DNA Nucleotidiltransferases/metabolismo , Regulação da Expressão Gênica de Plantas , Genes Homeobox , Genes de Plantas , Proteínas de Homeodomínio/genética , Proteínas de Domínio MADS , Meristema/genética , Meristema/metabolismo , Fenótipo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , RNA de Plantas/genética , RNA de Plantas/metabolismo , Fatores de Transcrição/genética
8.
Science ; 289(5478): 436-8, 2000 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-10903201

RESUMO

The terminal step of fruit development in Arabidopsis involves valve separation from the replum, allowing seed dispersal. This process requires the activities of the SHATTERPROOF MADS-box genes, which promote dehiscence zone differentiation at the valve/replum boundary. Here we show that the FRUITFULL MADS-box gene, which is necessary for fruit valve differentiation, is a negative regulator of SHATTERPROOF expression and that constitutive expression of FRUITFULL is sufficient to prevent formation of the dehiscence zone. Our studies suggest that ectopic expression of FRUITFULL may directly allow the control of pod shatter in oilseed crops such as canola.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Fatores de Transcrição/genética , Proteínas de Ligação a DNA/fisiologia , Proteínas de Domínio MADS , Mutação , Fenótipo , Proteínas de Plantas , Estruturas Vegetais/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , RNA de Plantas/genética , RNA de Plantas/metabolismo , Sementes , Fatores de Transcrição/fisiologia
9.
Mol Cell ; 5(3): 569-79, 2000 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10882141

RESUMO

The degree to which the eudicot-based ABC model of flower organ identity applies to the other major subclass of angrosperms, the monocots, has yet to be fully explored. We cloned silky1 (si1), a male sterile mutant of Zea mays that has homeotic conversions of stamens into carpels and lodicules into palea/lemma-like structures. Our studies indicate that si1 is a monocot B function MADS box gene. Moreover, the si1 zag1 double mutant produces a striking spikelet phenotype where normal glumes enclose reiterated palea/lemma-like organs. These studies indicate that B function gene activity is conserved among monocots as well as eudicots. In addition, they provide compelling developmental evidence for recognizing lodicules as modified petals and, possibly, palea and lemma as modified sepals.


Assuntos
Genes Homeobox , Genes de Plantas , Magnoliopsida/genética , Brotos de Planta/genética , Zea mays/genética , Subunidades alfa do Complexo de Proteínas Adaptadoras , Proteínas Adaptadoras de Transporte Vesicular , Evolução Biológica , Clonagem Molecular/métodos , Proteína DEFICIENS , Elementos de DNA Transponíveis , Proteínas de Ligação a DNA/genética , Proteínas de Homeodomínio/genética , Proteínas de Domínio MADS , Proteínas de Membrana/genética , Modelos Biológicos , Morfogênese/genética , Mutação , Proteínas de Plantas/genética , Brotos de Planta/anatomia & histologia , Fatores de Tempo , Distribuição Tecidual , Fatores de Transcrição/genética , Zea mays/anatomia & histologia
10.
Science ; 288(5471): 1613-6, 2000 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-10834834

RESUMO

In plants, flowering is triggered by endogenous and environmental signals. CONSTANS (CO) promotes flowering of Arabidopsis in response to day length. Four early target genes of CO were identified using a steroid-inducible version of the protein. Two of these genes, SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1) and FLOWERING LOCUS T (FT), are required for CO to promote flowering; the others are involved in proline or ethylene biosynthesis. The SOC1 and FT genes are also regulated by a second flowering-time pathway that acts independently of CO. Thus, early target genes of CO define common components of distinct flowering-time pathways.


Assuntos
Proteínas de Arabidopsis , Arabidopsis/fisiologia , Proteínas de Ligação a DNA/fisiologia , Regulação da Expressão Gênica de Plantas , Transdução de Sinais , Fatores de Transcrição/fisiologia , Arabidopsis/genética , Cicloeximida/farmacologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dexametasona/farmacologia , Etilenos/biossíntese , Genes de Plantas , Proteínas de Domínio MADS , Meristema/genética , Meristema/fisiologia , Fenótipo , Fotoperíodo , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Brotos de Planta/genética , Brotos de Planta/fisiologia , Plantas Geneticamente Modificadas , Prolina/biossíntese , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/fisiologia , Proteínas Recombinantes de Fusão , Supressão Genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Nature ; 405(6783): 200-3, 2000 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-10821278

RESUMO

Abnormal flowers have been recognized for thousands of years, but only in the past decade have the mysteries of flower development begun to unfold. Among these mysteries is the differentiation of four distinct organ types (sepals, petals, stamens and carpels), each of which may be a modified leaf. A landmark accomplishment in plant developmental biology is the ABC model of flower organ identity. This simple model provides a conceptual framework for explaining how the individual and combined activities of the ABC genes produce the four organ types of the typical eudicot flower. Here we show that the activities of the B and C organ-identity genes require the activities of three closely related and functionally redundant MADS-box genes, SEPALLATA1/2/3 (SEP1/2/3). Triple mutant Arabidopsis plants lacking the activity of all three SEP genes produce flowers in which all organs develop as sepals. Thus SEP1/2/3 are a class of organ-identity genes that is required for development of petals, stamens and carpels.


Assuntos
Arabidopsis/fisiologia , Genes de Plantas , Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Proteínas de Domínio MADS , Mutação , Proteínas de Plantas , Estruturas Vegetais/fisiologia , Reação em Cadeia da Polimerase , Fatores de Transcrição/genética
12.
Proc Natl Acad Sci U S A ; 97(10): 5328-33, 2000 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-10805792

RESUMO

Changes in genes encoding transcriptional regulators can alter development and are important components of the molecular mechanisms of morphological evolution. MADS-box genes encode transcriptional regulators of diverse and important biological functions. In plants, MADS-box genes regulate flower, fruit, leaf, and root development. Recent sequencing efforts in Arabidopsis have allowed a nearly complete sampling of the MADS-box gene family from a single plant, something that was lacking in previous phylogenetic studies. To test the long-suspected parallel between the evolution of the MADS-box gene family and the evolution of plant form, a polarized gene phylogeny is necessary. Here we suggest that a gene duplication ancestral to the divergence of plants and animals gave rise to two main lineages of MADS-box genes: TypeI and TypeII. We locate the root of the eukaryotic MADS-box gene family between these two lineages. A novel monophyletic group of plant MADS domains (AGL34 like) seems to be more closely related to previously identified animal SRF-like MADS domains to form TypeI lineage. Most other plant sequences form a clear monophyletic group with animal MEF2-like domains to form TypeII lineage. Only plant TypeII members have a K domain that is downstream of the MADS domain in most plant members previously identified. This suggests that the K domain evolved after the duplication that gave rise to the two lineages. Finally, a group of intermediate plant sequences could be the result of recombination events. These analyses may guide the search for MADS-box sequences in basal eukaryotes and the phylogenetic placement of new genes from other plant species.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Evolução Molecular , Duplicação Gênica , Variação Genética , Família Multigênica , Filogenia , Plantas/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética , Sequência de Aminoácidos , Animais , Fungos/genética , Proteínas de Domínio MADS , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
13.
Nature ; 404(6779): 766-70, 2000 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-10783890

RESUMO

The fruit, which mediates the maturation and dispersal of seeds, is a complex structure unique to flowering plants. Seed dispersal in plants such as Arabidopsis occurs by a process called fruit dehiscence, or pod shatter. Few studies have focused on identifying genes that regulate this process, in spite of the agronomic value of controlling seed dispersal in crop plants such as canola. Here we show that the closely related SHATTERPROOF (SHP1) and SHATTERPROOF2 (SHP2) MADS-box genes are required for fruit dehiscence in Arabidopsis. Moreover, SHP1 and SHP2 are functionally redundant, as neither single mutant displays a novel phenotype. Our studies of shp1 shp2 fruit, and of plants constitutively expressing SHP1 and SHP2, show that these two genes control dehiscence zone differentiation and promote the lignification of adjacent cells. Our results indicate that further analysis of the molecular events underlying fruit dehiscence may allow genetic manipulation of pod shatter in crop plants.


Assuntos
Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética , Arabidopsis/fisiologia , Arabidopsis/ultraestrutura , Proteínas de Ligação a DNA/fisiologia , Lignina/metabolismo , Proteínas de Domínio MADS , Fenótipo , Proteínas de Plantas , Reação em Cadeia da Polimerase , Sementes/genética , Sementes/ultraestrutura , Fatores de Transcrição/fisiologia
14.
Plant Physiol ; 122(4): 1003-13, 2000 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10759496

RESUMO

Activation tagging using T-DNA vectors that contain multimerized transcriptional enhancers from the cauliflower mosaic virus (CaMV) 35S gene has been applied to Arabidopsis plants. New activation-tagging vectors that confer resistance to the antibiotic kanamycin or the herbicide glufosinate have been used to generate several tens of thousands of transformed plants. From these, over 30 dominant mutants with various phenotypes have been isolated. Analysis of a subset of mutants has shown that overexpressed genes are almost always found immediately adjacent to the inserted CaMV 35S enhancers, at distances ranging from 380 bp to 3.6 kb. In at least one case, the CaMV 35S enhancers led primarily to an enhancement of the endogenous expression pattern rather than to constitutive ectopic expression, suggesting that the CaMV 35S enhancers used here act differently than the complete CaMV 35S promoter. This has important implications for the spectrum of genes that will be discovered by this method.


Assuntos
Arabidopsis/genética , Arabidopsis/virologia , Sequência de Bases , Caulimovirus/genética , Primers do DNA , DNA Bacteriano , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica de Plantas , Vetores Genéticos , Fenótipo , Regiões Promotoras Genéticas , Transformação Genética
15.
Curr Opin Plant Biol ; 3(1): 47-52, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10679448

RESUMO

The ABC model of flower development represents a milestone in explaining how the fate of emerging floral organ primordia is specified. This model states that organ identity is specified by different combinations of the activities of the A, B and C class homeotic genes. In spite of the remarkable simplicity of this model, the complex regulatory interactions that establish the initial pattern of A, B and C gene activity have yet to be fully explained. It has been shown that the LEAFY gene functions early to promote flower meristem identity, and that it is subsequently required for the normal expression of the ABC genes. Recently, LEAFY has been identified as an immediate upstream regulator of the floral homeotic genes, thus opening up an avenue to examine the transcriptional interactions that underlie floral patterning.


Assuntos
Proteínas de Arabidopsis , Genes Homeobox , Genes de Plantas , Proteínas de Domínio MADS , Brotos de Planta/crescimento & desenvolvimento , Fatores de Transcrição , Proteína AGAMOUS de Arabidopsis , Proteínas de Ligação a DNA/genética , Proteínas de Homeodomínio/genética , Morfogênese , Proteínas de Plantas/genética
16.
Development ; 127(4): 725-34, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10648231

RESUMO

The transition from vegetative to reproductive phases during Arabidopsis development is the result of a complex interaction of environmental and endogenous factors. One of the key regulators of this transition is LEAFY (LFY), whose threshold levels of activity are proposed to mediate the initiation of flowers. The closely related APETALA1 (AP1) and CAULIFLOWER (CAL) meristem identity genes are also important for flower initiation, in part because of their roles in upregulating LFY expression. We have found that mutations in the FRUITFULL (FUL) MADS-box gene, when combined with mutations in AP1 and CAL, lead to a dramatic non-flowering phenotype in which plants continuously elaborate leafy shoots in place of flowers. We demonstrate that this phenotype is caused both by the lack of LFY upregulation and by the ectopic expression of the TERMINAL FLOWER1 (TFL1) gene. Our results suggest that the FUL, AP1 and CAL genes act redundantly to control inflorescence architecture by affecting the domains of LFY and TFL1 expression as well as the relative levels of their activities.


Assuntos
Proteínas de Arabidopsis , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Genes de Plantas , Proteínas de Domínio MADS , Fatores de Transcrição , Sequência de Bases , Primers do DNA/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Meristema/crescimento & desenvolvimento , Microscopia Eletrônica de Varredura , Mutação , Fenótipo , Proteínas de Plantas/genética , Supressão Genética
17.
Plant J ; 20(2): 259-63, 1999 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-10571886

RESUMO

The Arabidopsis thaliana MERISTEM LAYER 1 (ATML1) gene is expressed in the epidermis of developing embryos and shoot meristems. To identify regulatory sequences necessary for epidermis-specific expression, three fusions of overlapping ATML1 genomic sequences to the GUS reporter gene were introduced into Arabidopsis plants. All fusion genes conferred epidermis-specific expression of both GUS mRNA and protein activity but varied in both the timing and relative levels of expression, suggesting partial redundancy of ATML1 regulatory elements. This study defines L1-specific regulatory sequences that are sufficient to direct foreign gene expression in a layer-specific manner.


Assuntos
Proteínas de Arabidopsis , Arabidopsis/genética , DNA de Plantas/genética , Proteínas de Homeodomínio/metabolismo , Meristema/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/metabolismo , Genes Reporter , Proteínas de Homeodomínio/genética , Dados de Sequência Molecular , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sequências Reguladoras de Ácido Nucleico
18.
Plant Cell ; 11(6): 1007-18, 1999 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10368173

RESUMO

Upon floral induction, the primary shoot meristem of an Arabidopsis plant begins to produce flower meristems rather than leaf primordia on its flanks. Assignment of floral fate to lateral meristems is primarily due to the cooperative activity of the flower meristem identity genes LEAFY (LFY), APETALA1 (AP1), and CAULIFLOWER. We present evidence here that AP1 expression in lateral meristems is activated by at least two independent pathways, one of which is regulated by LFY. In lfy mutants, the onset of AP1 expression is delayed, indicating that LFY is formally a positive regulator of AP1. We have found that AP1, in turn, can positively regulate LFY, because LFY is expressed prematurely in the converted floral meristems of plants constitutively expressing AP1. Shoot meristems maintain an identity distinct from that of flower meristems, in part through the action of genes such as TERMINAL FLOWER1 (TFL1), which bars AP1 and LFY expression from the influorescence shoot meristem. We show here that this negative regulation can be mutual because TFL1 expression is downregulated in plants constitutively expressing AP1. Therefore, the normally sharp phase transition between the production of leaves with associated shoots and formation of the flowers, which occurs upon floral induction, is promoted by positive feedback interactions between LFY and AP1, together with negative interactions of these two genes with TFL1.


Assuntos
Proteínas de Arabidopsis , Arabidopsis/fisiologia , Proteínas de Homeodomínio/genética , Proteínas de Plantas/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS , Meristema , Fator de Transcrição AP-1/genética , Fatores de Transcrição/genética
20.
Annu Rev Biochem ; 68: 321-54, 1999.
Artigo em Inglês | MEDLINE | ID: mdl-10872453

RESUMO

The fruit is a highly specialized plant organ that occurs in diverse forms among the angiosperms. Fruits of Arabidopsis thaliana, which are typical of the > 3000 species of Brassicaceae, develop from a gynoecium that consists of two fused carpels. The mature gynoecium of Arabidopsis is composed of an apical stigma, a short style, and a basal ovary that contains the developing ovules. After the ovules are fertilized, the fruit elongates and differentiates a number of distinct cell types, allowing for the successful maturation and the eventual dispersal of the seeds. Although the processes involved in carpel and fruit morphogenesis are not well understood, recent studies have identified a large number of mutants that display abnormal gynoecium and fruit development. The detailed phenotypic description of these mutants together with recent cloning of many of these genes has begun to shed light on this interesting and complex developmental process. Here we review the growing collection of Arabidopsis genes known to control the initiation and development of the gynoecium and resulting fruit.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Morfogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...