Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Neurosci ; 25(4): 433-445, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35361972

RESUMO

The noncoding genome is substantially larger than the protein-coding genome but has been largely unexplored by genetic association studies. Here, we performed region-based rare variant association analysis of >25,000 variants in untranslated regions of 6,139 amyotrophic lateral sclerosis (ALS) whole genomes and the whole genomes of 70,403 non-ALS controls. We identified interleukin-18 receptor accessory protein (IL18RAP) 3' untranslated region (3'UTR) variants as significantly enriched in non-ALS genomes and associated with a fivefold reduced risk of developing ALS, and this was replicated in an independent cohort. These variants in the IL18RAP 3'UTR reduce mRNA stability and the binding of double-stranded RNA (dsRNA)-binding proteins. Finally, the variants of the IL18RAP 3'UTR confer a survival advantage for motor neurons because they dampen neurotoxicity of human induced pluripotent stem cell (iPSC)-derived microglia bearing an ALS-associated expansion in C9orf72, and this depends on NF-κB signaling. This study reveals genetic variants that protect against ALS by reducing neuroinflammation and emphasizes the importance of noncoding genetic association studies.


Assuntos
Esclerose Lateral Amiotrófica , Células-Tronco Pluripotentes Induzidas , Subunidade beta de Receptor de Interleucina-18/genética , Regiões 3' não Traduzidas/genética , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Subunidade beta de Receptor de Interleucina-18/metabolismo , Neurônios Motores/metabolismo
2.
Mol Metab ; 60: 101467, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35240340

RESUMO

OBJECTIVES: Until recently, communication between neighboring cells in islets of Langerhans was overlooked by genomic technologies, which require rigorous tissue dissociation into single cells. METHODS: We utilize sorting of physically interacting cells (PICs) with single-cell RNA-sequencing to systematically map cellular interactions in the endocrine pancreas after pancreatectomy. RESULTS: The pancreas cellular landscape features pancreatectomy associated heterogeneity of beta-cells, including an interaction-specific program between paired beta and delta-cells. CONCLUSIONS: Our analysis suggests that the particular cluster of beta-cells that pairs with delta-cells benefits from stress protection, implying that the interaction between beta- and delta-cells might safeguard against pancreatectomy associated challenges. The work encourages testing the potential relevance of physically-interacting beta-delta-cells also in diabetes mellitus.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Pâncreas , Pancreatectomia , Regeneração
3.
Nat Neurosci ; 24(11): 1534-1541, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34711961

RESUMO

Amyotrophic lateral sclerosis (ALS) is a relentless neurodegenerative disease of the human motor neuron system, where variability in progression rate limits clinical trial efficacy. Therefore, better prognostication will facilitate therapeutic progress. In this study, we investigated the potential of plasma cell-free microRNAs (miRNAs) as ALS prognostication biomarkers in 252 patients with detailed clinical phenotyping. First, we identified, in a longitudinal cohort, miRNAs whose plasma levels remain stable over the course of disease. Next, we showed that high levels of miR-181, a miRNA enriched in neurons, predicts a greater than two-fold risk of death in independent discovery and replication cohorts (126 and 122 patients, respectively). miR-181 performance is similar to neurofilament light chain (NfL), and when combined together, miR-181 + NfL establish a novel RNA-protein biomarker pair with superior prognostication capacity. Therefore, plasma miR-181 alone and a novel miRNA-protein biomarker approach, based on miR-181 + NfL, boost precision of patient stratification. miR-181-based ALS biomarkers encourage additional validation and might enhance the power of clinical trials.


Assuntos
Esclerose Lateral Amiotrófica/sangue , Esclerose Lateral Amiotrófica/diagnóstico , MicroRNAs/sangue , Idoso , Animais , Biomarcadores/sangue , Estudos de Coortes , Feminino , Humanos , Estudos Longitudinais , Masculino , Camundongos , Pessoa de Meia-Idade , Prognóstico
4.
Sci Transl Med ; 11(523)2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852800

RESUMO

Motor neuron-specific microRNA-218 (miR-218) has recently received attention because of its roles in mouse development. However, miR-218 relevance to human motor neuron disease was not yet explored. Here, we demonstrate by neuropathology that miR-218 is abundant in healthy human motor neurons. However, in amyotrophic lateral sclerosis (ALS) motor neurons, miR-218 is down-regulated and its mRNA targets are reciprocally up-regulated (derepressed). We further identify the potassium channel Kv10.1 as a new miR-218 direct target that controls neuronal activity. In addition, we screened thousands of ALS genomes and identified six rare variants in the human miR-218-2 sequence. miR-218 gene variants fail to regulate neuron activity, suggesting the importance of this small endogenous RNA for neuronal robustness. The underlying mechanisms involve inhibition of miR-218 biogenesis and reduced processing by DICER. Therefore, miR-218 activity in motor neurons may be susceptible to failure in human ALS, suggesting that miR-218 may be a potential therapeutic target in motor neuron disease.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , MicroRNAs/metabolismo , Neuropatologia/métodos , Esclerose Lateral Amiotrófica/genética , Animais , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Humanos , Camundongos , MicroRNAs/genética , Neurônios Motores/metabolismo , Neurônios/metabolismo
5.
Diabetologia ; 62(9): 1653-1666, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31187215

RESUMO

AIMS/HYPOTHESIS: Adult beta cells in the pancreas are the sole source of insulin in the body. Beta cell loss or increased demand for insulin impose metabolic challenges because adult beta cells are generally quiescent and infrequently re-enter the cell division cycle. The aim of this study is to test the hypothesis that a family of proto-oncogene microRNAs that includes miR-17-92 and miR-106b-25 clusters regulates beta cell proliferation or function in the adult endocrine pancreas. METHODS: To elucidate the role of miR-17-92 and miR-106b-25 clusters in beta cells, we used a conditional miR-17-92/miR-106b-25 knockout mouse model. We employed metabolic assays in vivo and ex vivo, together with advanced microscopy of pancreatic sections, bioinformatics, mass spectrometry and next generation sequencing, to examine potential targets of miR-17-92/miR-106b-25, by which they might regulate beta cell proliferation and function. RESULTS: We demonstrate that miR-17-92/miR-106b-25 regulate the adult beta cell mitotic checkpoint and that miR-17-92/miR-106b-25 deficiency results in reduction in beta cell mass in vivo. Furthermore, we reveal a critical role for miR-17-92/miR-106b-25 in glucose homeostasis and in controlling insulin secretion. We identify protein kinase A as a new relevant molecular pathway downstream of miR-17-92/miR-106b-25 in control of adult beta cell division and glucose homeostasis. CONCLUSIONS/INTERPRETATION: The study contributes to the understanding of proto-oncogene miRNAs in the normal, untransformed endocrine pancreas and illustrates new genetic means for regulation of beta cell mitosis and function by non-coding RNAs. DATA AVAILABILITY: Sequencing data that support the findings of this study have been deposited in GEO with the accession code GSE126516.


Assuntos
Secreção de Insulina/fisiologia , Células Secretoras de Insulina/metabolismo , MicroRNAs/metabolismo , Animais , Células Cultivadas , Feminino , Citometria de Fluxo , Secreção de Insulina/genética , Masculino , Espectrometria de Massas , Camundongos , MicroRNAs/genética , Mitose/genética , Mitose/fisiologia , Pâncreas/metabolismo
6.
Sci Rep ; 8(1): 59, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29311649

RESUMO

microRNAs (miRNAs) are critical for neuronal function and their dysregulation is repeatedly observed in neurodegenerative diseases. Here, we implemented high content image analysis for investigating the impact of several miRNAs in mouse primary motor neurons. This survey directed our attention to the neuron-specific miR-124, which controls axonal morphology. By performing next generation sequencing analysis and molecular studies, we characterized novel roles for miR-124 in control of mitochondria localization and function. We further demonstrated that the intermediate filament Vimentin is a key target of miR-124 in this system. Our data establishes a new pathway for control of mitochondria function in motor neurons, revealing the value of a neuron-specific miRNA gene as a mechanism for the re-shaping of otherwise ubiquitously-expressed intermediate filament network, upstream of mitochondria activity and cellular metabolism.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neurônios Motores/metabolismo , Interferência de RNA , Vimentina/genética , Animais , Axônios , Células Cultivadas , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Ontologia Genética , Camundongos , Imagem Molecular , Transcriptoma , Vimentina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...