Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38130938

RESUMO

Scientific user facilities present a unique set of challenges for image processing due to the large volume of data generated from experiments and simulations. Furthermore, developing and implementing algorithms for real-time processing and analysis while correcting for any artifacts or distortions in images remains a complex task, given the computational requirements of the processing algorithms. In a collaborative effort across multiple Department of Energy national laboratories, the "MLExchange" project is focused on addressing these challenges. MLExchange is a Machine Learning framework deploying interactive web interfaces to enhance and accelerate data analysis. The platform allows users to easily upload, visualize, label, and train networks. The resulting models can be deployed on real data while both results and models could be shared with the scientists. The MLExchange web-based application for image segmentation allows for training, testing, and evaluating multiple machine learning models on hand-labeled tomography data. This environment provides users with an intuitive interface for segmenting images using a variety of machine learning algorithms and deep-learning neural networks. Additionally, these tools have the potential to overcome limitations in traditional image segmentation techniques, particularly for complex and low-contrast images.

2.
J Synchrotron Radiat ; 30(Pt 1): 137-146, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36601933

RESUMO

In situ synchrotron high-energy X-ray powder diffraction (XRD) is highly utilized by researchers to analyze the crystallographic structures of materials in functional devices (e.g. battery materials) or in complex sample environments (e.g. diamond anvil cells or syntheses reactors). An atomic structure of a material can be identified by its diffraction pattern along with a detailed analysis of the Rietveld refinement which yields rich information on the structure and the material, such as crystallite size, microstrain and defects. For in situ experiments, a series of XRD images is usually collected on the same sample under different conditions (e.g. adiabatic conditions) yielding different states of matter, or is simply collected continuously as a function of time to track the change of a sample during a chemical or physical process. In situ experiments are usually performed with area detectors and collect images composed of diffraction patterns. For an ideal powder, the diffraction pattern should be a series of concentric Debye-Scherrer rings with evenly distributed intensities in each ring. For a realistic sample, one may observe different characteristics other than the typical ring pattern, such as textures or preferred orientations and single-crystal diffraction spots. Textures or preferred orientations usually have several parts of a ring that are more intense than the rest, whereas single-crystal diffraction spots are localized intense spots owing to diffraction of large crystals, typically >10 µm. In this work, an investigation of machine learning methods is presented for fast and reliable identification and separation of the single-crystal diffraction spots in XRD images. The exclusion of artifacts during an XRD image integration process allows a precise analysis of the powder diffraction rings of interest. When it is trained with small subsets of highly diverse datasets, the gradient boosting method can consistently produce high-accuracy results. The method dramatically decreases the amount of time spent identifying and separating single-crystal diffraction spots in comparison with the conventional method.

3.
Phys Rev Lett ; 129(18): 185701, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36374681

RESUMO

In this Letter, we present a framework that combines machine learning potential (MLP) and metadynamics to investigate solid-solid phase transition. Based on the spectral descriptors and neural networks regression, we develop a scalable MLP model to warrant an accurate interpolation of the energy surface where two phases coexist. Applying it to the simulation of B4-B1 phase transition of GaN under 50 GPa with different model sizes, we observe sequential change of the phase transition mechanism from collective modes to nucleation and growths. When the size is at or below 128 000 atoms, the nucleation and growth appear to follow a preferred direction. At larger sizes, the nuclei occur at multiple sites simultaneously and grow to microstructures by passing the critical size. The observed change of the atomistic mechanism manifests the importance of statistical sampling with large system size in phase transition modeling.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38131031

RESUMO

Machine learning (ML) algorithms are showing a growing trend in helping the scientific communities across different disciplines and institutions to address large and diverse data problems. However, many available ML tools are programmatically demanding and computationally costly. The MLExchange project aims to build a collaborative platform equipped with enabling tools that allow scientists and facility users who do not have a profound ML background to use ML and computational resources in scientific discovery. At the high level, we are targeting a full user experience where managing and exchanging ML algorithms, workflows, and data are readily available through web applications. Since each component is an independent container, the whole platform or its individual service(s) can be easily deployed at servers of different scales, ranging from a personal device (laptop, smart phone, etc.) to high performance clusters (HPC) accessed (simultaneously) by many users. Thus, MLExchange renders flexible using scenarios-users could either access the services and resources from a remote server or run the whole platform or its individual service(s) within their local network.

5.
J Chem Phys ; 153(5): 054118, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32770884

RESUMO

In this article, we present a systematic study on developing machine learning force fields (MLFFs) for crystalline silicon. While the main-stream approach of fitting a MLFF is to use a small and localized training set from molecular dynamics simulations, it is unlikely to cover the global features of the potential energy surface. To remedy this issue, we used randomly generated symmetrical crystal structures to train a more general Si-MLFF. Furthermore, we performed substantial benchmarks among different choices of material descriptors and regression techniques on two different sets of silicon data. Our results show that neural network potential fitting with bispectrum coefficients as descriptors is a feasible method for obtaining accurate and transferable MLFFs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...