Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38999060

RESUMO

Incorporating outstanding flame retardancy and electromagnetic interference shielding effectiveness (EMI SE) into polymers is a pressing requirement for practical utilization. In this study, we first employed the principles of microencapsulation and electrostatic interaction-driven self-assembly to encapsulate polyethyleneimine (PEI) molecules and Ti3C2Tx nanosheets on the surface of ammonium polyphosphate (APP), forming a double-layer-encapsulated structure of ammonium polyphosphate (APP@PEI@Ti3C2Tx). Subsequently, flame-retardant thermoplastic polyurethane (TPU) composites were fabricated by melting the flame-retardant agent with TPU. Afterwards, by using air-assisted thermocompression technology, we combined a reduced graphene oxide (rGO) film with flame-retardant TPU composites to fabricate hierarchical TPU/APP@PEI@Ti3C2Tx/rGO composites. We systematically studied the combustion behavior, flame retardancy, and smoke-suppression performance of these composite materials, as well as the flame-retardant mechanism of the expansion system. The results indicated a significant improvement in the interface interaction between APP@PEI@Ti3C2Tx and the TPU matrix. Compared to pure TPU, the TPU/10APP@PEI@1TC composite exhibited reductions of 84.1%, 43.2%, 62.4%, and 85.2% in peak heat release rate, total heat release, total smoke release, and total carbon dioxide yield, respectively. The averaged EMI SE of hierarchical TPU/5APP@PEI@1TC/rGO also reached 15.53 dB in the X-band.

2.
J Colloid Interface Sci ; 640: 179-191, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36848771

RESUMO

Integrating high flame retardancy and excellent electromagnetic interference (EMI) shielding into polymetric materials is extremely necessary, and well dispersing conductive fillers into polymeric materials is still a great challenge because of incompatible interfacial polarity between polymer matrix and conductive fillers. Therefore, under the premise of maintaining integral conductive films in the process of hot compression, constructing a novel EMI shielding polymer nanocomposites where conductive films closely adhere to polymer nanocmposites layers should be a fascinating stratety. In this work, salicylaldehyde-modified chitosan decorated titanium carbide nanohybrid (Ti3C2Tx-SCS) was combined with piperazine-modified ammonium polyphosphate (PA-APP) to fabricate thermoplastic polyurethane (TPU) nanocomposites, which were used for construction of hierarchical nanocomposite films by inserting reduced graphene oxide (rGO) films into TPU/PA-APP/Ti3C2Tx-SCS nanocomposite layers through our self-developed air assisted hot pressing technique. The total heat release, total smoke release and total carbon monoxide yield for TPU nanocomposite containing 4.0 wt% Ti3C2Tx-SCS nanohybrid were 58.0%, 58.4% and 75.8% lower than those of pristine TPU, respectively. Besides, the hierarchical TPU nanocomposite film containing 1.0 wt% Ti3C2Tx-SCS presented an averaged EMI shielding effectiveness of 21.3 dB in X band. This work provides a promising strategy for fabricating fire safe and EMI shielding polymer nanocomposites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...