Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Front Oncol ; 14: 1408584, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835390

RESUMO

Background: For the lack of effective serum markers for hepatocellular carcinoma(HCC) diagnosis, it is difficult to detect liver cancer and identify its recurrence early. Methods: Databases were used to analyze the genes potentially associated with alpha-fetoprotein(AFP). ELISA assay was used to detect the serum IL-41 in HCC, liver metastases, hepatitis, and healthy people. Immunohistochemical staining was used to analyze the relative quantification of IL-41 in HCC and paracancer tissues. Various survival curves were plotted according to clinical pathological data and helped us draw the ROC curve of IL-41 diagnosis of HCC. Results: The serum expression of IL-41 was highest in AFP negative HCC patients and significantly higher than that in AFP positive HCC and metastatic cancer patients. There was a significant negative correlation between elevated serum IL-41 and AFP(<1500ng/ml). The clinicopathological features suggested that the serum IL-41 level was significantly correlated with capsule invasion, low differentiation and AFP. High serum expression of IL-41 suggests poorer survival and earlier recurrence after resection, and IL-41 upregulated in patients with early recurrence and death. The expression of IL-41 was higher in HCC tissues of patients with multiple tumors or microvascular invasion. The ROC curve showed that serum IL-41 had a sensitivity of 90.17 for HCC and a sensitivity of 96.63 for AFP-negative HCC, while the specificity was higher than 61%. Conclusion: IL-41 in serum and tissue suggests poor prognosis and postoperative recurrence in HCC patients and could be a new serum diagnostic marker for AFP negative patients.

2.
Adv Mater ; : e2401178, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38648568

RESUMO

Shape memory polymers (SMPs) have attracted significant attention and hold vast potential for diverse applications. Nevertheless, conventional SMPs suffer from notable shortcomings in terms of mechanical properties, environmental stability, and energy density, significantly constraining their practical utility. Here, inspired by the structure of muscle fibers, an innovative approach that involves the precise incorporation of subtle, permanent cross-linking within a hierarchical hydrogen bonding supramolecular network is reported. This novel strategy has culminated in the development of covalent and supramolecular shape memory polyurea, which exhibits exceptional mechanical properties, including high stiffness (1347 MPa), strength (82.4 MPa), and toughness (312.7 MJ m-3), ensuring its suitability for a wide range of applications. Furthermore, it boasts remarkable recyclability and repairability, along with excellent resistance to moisture, heat, and solvents. Moreover, the polymer demonstrates outstanding shape memory effects characterized by a high energy density (24.5 MJ m-3), facilitated by the formation of strain-induced oriented nanostructures that can store substantial amounts of entropic energy. Simultaneously, it maintains a remarkable 96% shape fixity and 99% shape recovery. This delicate interplay of covalent and supramolecular bonds opens up a promising pathway to the creation of high-performance SMPs, expanding their applicability across various domains.

3.
Plants (Basel) ; 12(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38140500

RESUMO

Salt stress is a lethal abiotic stress threatening global food security on a consistent basis. In this study, we identified an AP2 and B3 domain-containing transcription factor (TF) named SmRAV1, and its expression levels were significantly up-regulated by NaCl, abscisic acid (ABA), and hydrogen peroxide (H2O2) treatment. High expression of SmRAV1 was observed in the roots and sepal of mature plants. The transient expression assay in Nicotiana benthamiana leaves revealed that SmRAV1 was localized in the nucleus. Silencing of SmRAV1 via virus-induced gene silencing (VIGS) decreased the tolerance of eggplant to salt stress. Significant down-regulation of salt stress marker genes, including SmGSTU10 and SmNCED1, was observed. Additionally, increased H2O2 content and decreased catalase (CAT) enzyme activity were recorded in the SmRAV1-silenced plants compared to the TRV:00 plants. Our findings elucidate the functions of SmRAV1 and provide opportunities for generating salt-tolerant lines of eggplant.

4.
Cancer Immunol Immunother ; 72(12): 4279-4292, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37906282

RESUMO

Bcl-2-associated transcription factor-1 (BCLAF1), an apoptosis-regulating protein of paramount significance, orchestrates the progression of various malignancies. This study reveals increased BCLAF1 expression in hepatocellular carcinoma (HCC) patients, in whom elevated BCLAF1 levels are linked to escalated tumor grades and diminished survival rates. Moreover, novel BCLAF1 expression is particularly increased in HCC patients who were not sensitive to the combined treatment of atezolizumab and bevacizumab, but not in patients who had tumors that responded to the combined regimen. Notably, overexpression of BCLAF1 increases HCC cell proliferation in vitro and in vivo, while the conditioned medium derived from cells overexpressing BCLAF1 strikingly enhances the tube-formation capacity of human umbilical vein endothelial cells. Furthermore, compelling evidence demonstrates that BCLAF1 attenuates the expression of prolyl hydroxylase domain protein 2 (PHD2) and governs the stability of hypoxia-inducible factor-1α (HIF-1α) under normoxic conditions without exerting any influence on transcription, as determined by Western blot and RT‒qPCR analyses. Subsequently, employing coimmunoprecipitation and immunofluorescence, we validated the reciprocal interaction between BCLAF1 and Cullin 3 (CUL3), through which BCLAF1 actively upregulates the ubiquitination and degradation of PHD2. The Western blot and RT‒qPCR results suggests that programmed death ligand-1 (PD-L1) is one of the downstream responders to HIF-1α in HCC. Thus, we reveal the pivotal role of BCLAF1 in promoting PD-L1 transcription and, through binding to CUL3, in promoting the accumulation of HIF-1α under normoxic conditions, thereby facilitating the ubiquitination and degradation of PHD2.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Antígeno B7-H1 , Carcinoma Hepatocelular/patologia , Linhagem Celular , Proteínas Culina , Células Endoteliais/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia , Neoplasias Hepáticas/patologia , Proteínas Repressoras , Proteínas Supressoras de Tumor
5.
World J Clin Cases ; 11(24): 5692-5699, 2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37727708

RESUMO

BACKGROUND: Biliary adenomas that occur in the extrahepatic biliary tree are rare. It is difficult to distinguish it from cholangiocarcinoma or cholangiolithiasis by various imaging examinations, and it is very easy to be misdiagnosed. AIM: To evaluate the cumulative experiences including clinical characteristics and treatments of nine patients diagnosed with extrahepatic biliary adenoma admitted to the First Affiliated Hospital of Xi'an Jiaotong University from 2016 to 2022. METHODS: A total of nine patients were included in our study. The laboratory examinations, disease diagnosis, therapy and pathological characteristics, and follow-up of every patient were evaluated. RESULTS: Our cohort consisted of six females and three males with an average diagnosis age of 65.1 years (range 46-87). Six extrahepatic biliary adenomas were located in the common bile ducts and three in the hepatic duct. On initial presentation, all of the patients have symptom of biliary origin, including obstructive jaundice (4/9, 44.4%), abdominal pain (6/9, 66.7%), and fever (3/9, 33.3%). Preoperative imaging examination considered bile duct carcinoma in 6 cases and bile duct calculi in 3 cases. All the patients received surgical treatment and were confirmed by pathology as biliary adenoma. The symptoms improved significantly in all 9 patients after surgery. Seven of nine patients recovered well at follow-up without tumor recurrence. One patient died 2 mo after the surgery due to heart failure. One patient developed jaundice again 8 mo after surgery, underwent endoscopic retrograde cholangiopancreatography and biliary stent placement. CONCLUSION: Benign extrahepatic biliary tumors are rare and difficult to diagnosis preoperatively. Intraoperative choledochoscopy and timely biopsy may offer great advantages.

6.
Cell ; 186(17): 3577-3592.e18, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37499659

RESUMO

Hybrid sterility restricts the utilization of superior heterosis of indica-japonica inter-subspecific hybrids. In this study, we report the identification of RHS12, a major locus controlling male gamete sterility in indica-japonica hybrid rice. We show that RHS12 consists of two genes (iORF3/DUYAO and iORF4/JIEYAO) that confer preferential transmission of the RHS12-i type male gamete into the progeny, thereby forming a natural gene drive. DUYAO encodes a mitochondrion-targeted protein that interacts with OsCOX11 to trigger cytotoxicity and cell death, whereas JIEYAO encodes a protein that reroutes DUYAO to the autophagosome for degradation via direct physical interaction, thereby detoxifying DUYAO. Evolutionary trajectory analysis reveals that this system likely formed de novo in the AA genome Oryza clade and contributed to reproductive isolation (RI) between different lineages of rice. Our combined results provide mechanistic insights into the genetic basis of RI as well as insights for strategic designs of hybrid rice breeding.


Assuntos
Tecnologia de Impulso Genético , Oryza , Hibridização Genética , Oryza/genética , Melhoramento Vegetal/métodos , Isolamento Reprodutivo , Infertilidade das Plantas
7.
Adv Healthc Mater ; 12(24): e2203241, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37222707

RESUMO

Adhesive hydrogels containing quaternary ammonium salt (QAS) moieties have shown attractive advantages in treatment for acute wounds, attributed to their high performances in wound sealing and sterilization. However, the introduction of QAS commonly leads to high cytotoxicity and adhesive deterioration. Herein, aimed to solve these two issues, a self-adaptive dressing with delicate spatiotemporal responsiveness is developed by employing cellulose sulfate (CS) as dynamic layers to coat QAS-based hydrogel. In detail, due to the acid environment of wound in the early stages of healing, the CS coating will quickly detach to expose the active QAS groups for maximum disinfectant efficacy; meanwhile, as the wound gradually heals and recovers to a neutral pH, the CS will remain stable to keep QAS screened, realizing a high cell growth-promoting activity for epithelium regeneration. Additionally, attributed to the synergy of temporary hydrophobicity by CS and slow water absorption kinetics of the hydrogel, the resultant dressing possesses outstanding wound sealing and hemostasis performance. At last, this work anticipates this approach to intelligent wound dressings based on dynamic and responsive intermolecular interaction can also be applied to a wide range of self-adaptive biomedical materials employing different chemistries for applications in medical therapy and health monitoring.


Assuntos
Hidrogéis , Cicatrização , Hidrogéis/farmacologia , Hidrogéis/química , Antibacterianos/farmacologia , Antibacterianos/química , Bandagens , Materiais Biocompatíveis , Adesivos
8.
Mater Horiz ; 10(8): 2968-2979, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37166145

RESUMO

Soft self-healing materials are crucial for the development of next-generation wearable electronics that could function in dynamic environments and resist mechanical damage. However, several challenges remain, including fatigue fracture, poor elasticity, and thermodynamic lability, which significantly limit their practical applications. Here, with a model system of soft self-healing polyurea, we propose a molecular engineering strategy of transforming inherently fragile materials with an island-like structure into resilient ones with a bicontinuous nanophase separation structure using 2-ureido-4-pyrimidinone (UPy) supramolecular motifs as structural regulators. The dynamic and continuous hard domains modified by UPy formed a repairable bicontinuous network similar to those of the reticular layer in animal dermis. This design allows for a simultaneous and tremendous improvement in the fatigue threshold (34.8-fold increase), elastic restorability (the maximum elongation for full dimensional recovery increasing from 6 times to 13 times), and thermodynamic stability (4 orders of magnitude improvement in the characteristic flow transition relaxation time), without significantly compromising the compliance, autonomous self-healing, and optical transparency. These mechanical and thermodynamic improvements address current limitations in unfilled soft self-healing materials as reliable substrates for transparent strain-electronics.

9.
ACS Appl Mater Interfaces ; 15(19): 23613-23622, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37149900

RESUMO

The two-dimensional (2D) layered semiconductor α-In2Se3 has aroused great interest in atomic-scale ferroelectric transistors, artificial synapses, and nonvolatile memory devices due to its distinguished 2D ferroelectric properties. We have synthesized α-In2Se3 nanosheets with rare in-plane ferroelectric stripe domains at room temperature on mica substrates using a reverse flow chemical vapor deposition (RFCVD) method and optimized growth parameters. This stripe domain contrast is found to be strongly correlated to the stacking of layers, and the interrelated out-of-plane (OOP) and in-plane (IP) polarization can be manipulated by mapping the artificial domain structure. The acquisition of amplitude and phase hysteresis loops confirms the OOP polarization ferroelectric property. The emergence of striped domains enriches the variety of the ferroelectric structure types and novel properties of 2D In2Se3. This work paves a new way for the controllable growth of van der Waals ferroelectrics and facilitates the development of novel ferroelectric memory device applications.

10.
Artigo em Inglês | MEDLINE | ID: mdl-37018669

RESUMO

Compared to color images captured by conventional RGB cameras, monochrome (mono) images usually have higher signal-to-noise ratios (SNR) and richer textures due to the lack of color filter arrays in mono cameras. Therefore, using a mono-color stereo dual-camera system, we can integrate the lightness information of target monochrome images with the color information of guidance RGB images to accomplish image enhancement in a colorization manner. In this work, based on two assumptions, we introduce a novel probabilistic-concept guided colorization framework. First, adjacent contents with similar luminance are likely to have similar colors. By lightness matching, we can utilize colors of the matched pixels to estimate the target color value. Second, by matching multiple pixels from the guidance image, if more of these matched pixels have similar luminance values to the target one, we can estimate colors with more confidence. Based on the statistical distribution of multiple matching results, we retain the reliable color estimates as initial dense scribbles and then propagate them to the rest of the mono image. However, for a target pixel, the color information provided by its matching results is quite redundant. Hence, we introduce a patch sampling strategy to accelerate the colorization process. Based on the analysis of the posteriori probability distribution of the sampling results, we can use much fewer matches for color estimation and reliability assessment. To alleviate incorrect color propagation in the sparsely scribbled regions, we generate extra color seeds according to the existed scribbles to guide the propagation process. Experimental results show that, our algorithm can efficiently and effectively restore color images with higher SNR and richer details from the mono-color image pairs, and achieves good performance in solving the color bleeding problem.

11.
Adv Mater ; 35(18): e2211673, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36932878

RESUMO

As the soaring demand for energy storage continues to grow, batteries that can cope with extreme conditions are highly desired. Yet, existing battery materials are limited by weak mechanical properties and freeze-vulnerability, prohibiting safe energy storage in devices that are exposed to low temperature and unusual mechanical impacts. Herein, a fabrication method harnessing the synergistic effect of co-nonsolvency and "salting-out" that can produce poly(vinyl alcohol) hydrogel electrolytes with unique open-cell porous structures, composed of strongly aggregated polymer chains, and containing disrupted hydrogen bonds among free water molecules, is introduced. The hydrogel electrolyte simultaneously combines high strength (tensile strength 15.6 MPa), freeze-tolerance (< -77 °C), high mass transport (10× lower overpotential), and dendrite and parasitic reactions suppression for stable performance (30 000 cycles). The high generality of this method is further demonstrated with poly(N-isopropylacrylamide) and poly(N-tertbutylacrylamide-co-acrylamide) hydrogels. This work takes a further step toward flexible battery development for harsh environments.

12.
Adv Mater ; 35(26): e2300937, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36964931

RESUMO

Soft self-healing materials are compelling candidates for stretchable devices because of their excellent compliance, extensibility, and self-restorability. However, most existing soft self-healing polymers suffer from crack propagation and irreversible fatigue failure due to easy breakage of their dynamic amorphous, low-energy polymer networks. Herein, inspired by distinct structure-property relationship of biological tissues, a supramolecular interfacial assembly strategy of preparing soft self-healing composites with unprecedented crack propagation resistance is proposed by structurally engineering preferentially aligned lamellar structures within a dynamic and superstretchable poly(urea-ureathane) matrix (which is elongated to 24 750× its original length). Such a design affords a world-record fracture energy (501.6 kJ m-2 ), ultrahigh fatigue threshold (4064.1 J m-2 ), and outstanding elastic restorability (dimensional recovery from 13 times elongation), and preserving low modulus (1.2 MPa), high stretchability (3200%), and high room-temperature self-healing efficiency (97%). Thereby, the resultant composite represents the best of its kind and even surpasses most biological tissues. The lamellar 2D transition-metal carbide/carbonitride (MXene) structure also leads to a relatively high in-plane thermal conductivity, enabling composites as stretchable thermoconductive skins applied in joints of robotics to thermal dissipation. The present work illustrates a viable approach how autonomous self-healing, crack tolerance, and fatigue resistance can be merged in future material design.

14.
Oncol Rep ; 49(1)2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36484414

RESUMO

Subsequently to the publication of the above article, the authors have alerted the Editorial Office to the fact that they identified a small number of errors concerning the assembly of Figs. 3A, 6B and 7A in their paper. Specifically, the western blotting results for the BCL­3 and GAPDH experiments in Fig. 3A, the cyclin D1 blots in Fig. 6B and the cyclin D1 blots shown in Fig. 7A were selected erroneously when choosing images from the total pool of data due to the similarity in the appearance of the data. However, the authors retained their access to the raw data, and were able to make the appropriate corrections required for these figures. The corrected versions of Figs. 3, 6 and 7, showing the correct BLC­3/GAPDH and cyclin D1 data in Fig. 3A and 6B respectively, and the correct cyclin D1 data in Fig. 7A, are shown on the next two pages. Note that these errors did not adversely affect the major conclusions reported in the study. The authors all agree to the publication of this corrigendum, and thank the Editor of Oncology Reports for allowing them the opportunity to publish this. The authors also apologize for any inconvenience caused. [Oncology Reports 35: 2382­2390, 2016; DOI: 10.3892/or.2016.4616].

15.
Biomolecules ; 12(12)2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36551218

RESUMO

Rhynchophylline (RIN) and isorhynchophylline (IRN), two of the representative types of indole alkaloids, showed the unique spiroindole structures produced in Uncaria rhynchophylla. As the bioactive constituent of U. rhynchophylla, IRN has recently drawn extensive attention toward antihypertensive and neuroprotective activities. Despite their medicinal importance and unique chemical structure, the biosynthetic pathways of plant spiroindole alkaloids are still largely unknown. In this study, we used U. rhynchophylla, extensively used in traditional Chinese medicine (TCM), a widely cultivated plant of the Uncaria genus, to investigate the biosynthetic genes and characterize the functional enzymes in the spiroindole alkaloids. We aim to use the transcriptome platform to analyse the tissue-specific gene expression in spiroindole alkaloids-producing tissues, including root, bud, stem bark and leaf. The critical genes involved in the biosynthesis of precursors and scaffold formation of spiroindole alkaloids were discovered and characterized. The datasets from this work provide an essential resource for further investigating metabolic pathways in U. rhynchophylla and facilitate novel functional enzyme characterization and a good biopharming approach to spiroindole alkaloids.


Assuntos
Alcaloides , Alcaloides Indólicos , Oxindóis , Alcaloides Indólicos/química , Alcaloides/química
17.
Plant Sci ; 325: 111480, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36183810

RESUMO

Meiosis plays an essential role in the production of male and female gametes. Extensive studies have elucidated that homologous chromosome association and pairing are essential for crossing-over and recombination of chromosomal segments. However, the molecular mechanism of chromosome recognition and pairing remains elusive. Here, we identified a rice male-female sterility mutant plant. Cytological observations showed that the development of both pollen and embryo sacs of the mutant were abnormal due to defects in homologous chromosome recognition and pairing during prophase I. Map-based cloning revealed that Os06g0473000 encoding a poor homologous synapsis 1 (PHS1) protein is the candidate target gene, which was confirmed by knockout using CRISPR/Cas9 technology. Sequence analysis revealed a single base mutation (G > A) involving the junction of the fourth exon and intron of OsPHS1, which is predicted to alter splicing, resulting in an Osphs1 mutant. Expression pattern analysis indicated that OsPHS1 expression levels were mainly expressed in panicles at the beginning of meiosis. Subcellular localization analysis demonstrated that the OsPHS1 protein is situated in the nucleus and cytoplasm. Taken together, our results suggest an important role for OsPHS1 in homologous chromosome pairing in both male and female gametogenesis in rice.


Assuntos
Oryza , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pareamento Cromossômico , Meiose/genética , Células Germinativas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...