Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Yi Chuan ; 46(1): 63-77, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38230457

RESUMO

Hexaploid triticale is an important genetic resource for genetic improvement of common wheat, which can broaden the genetic basis of wheat. In order to lay a foundation for the subsequent research and utilization of triticale germplasm materials, the chromosomal genetic characteristics of cross and backcross offspring of hexaploid triticale×hexaploid wheat were investigated in the process of transferring rye chromatin from hexaploid triticale to hexaploid wheat. Hybrid and backcross combinations were prepared with hexaploid triticale 16yin171 as the maternal parent and hexaploid wheat Chuanmai62 as the paternal parent. The chromosomes in root tip cells of F1, BC1F1 and BC1F2 plants were traced and identified non-denaturing florescence in situ hybridization (ND-FISH). The results indicated that the backcross setting rate of hybrid F1 was 2.61%. The transmission frequency of 2R chromosome was the highest in BC1F1 plants while the transmissibility of rye chromosome in BC1F2 plant was 6R>4R>2R, and the 5B-7B wheat translocation in BC1F2 plants showed severe segregation. A total of 24 structural variant chromosomes were observed both in BC1F1 and BC1F2 plants, including chromosome fragments, isochromosomes, translocations, and dicentric chromosomes. In addition, the seed length and 1000-grain weight of some BC1F2 plants were better than that of the hexaploid wheat parent Chuanmai 62. Therefore, multiple backcrosses should be adopted as far as possible to make the rapid recovery of group D chromosomes, ensuring the recovery of fertility in offspring, when hexaploid tritriale is used as a bridge to introduce rye genetic material into common wheat. At the same time, the potential application value of chromosomal structural variation materials should be also concerned.


Assuntos
Triticale , Triticum , Triticum/genética , Triticale/genética , Secale/genética , Cromossomos de Plantas/genética , Hibridização In Situ , Translocação Genética
2.
Front Nutr ; 10: 1167805, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37404858

RESUMO

Background: Mushrooms are considered as next-generation healthy food components. Owing to their low-fat content, high-quality proteins, dietary fiber, and rich source of nutraceuticals. They are ideally preferred in formulation of low-caloric functional foods. In this view, the breeding strategies of mushroom Auricularia cornea (A. cornea) focusing on high yield and higher quality with rich nutritional values and health benefits are still needed. Materials and methods: A total of 50 strains of A. cornea were used to analyze the bio efficiency and the time required for fruiting body formation following the cultivation experiment. The calorimetric method was used to evaluate the antioxidant activity and quantify the crude polysaccharides and minerals content thereafter. Results: The results showed that the time required for fruiting body formation and biological efficiency varied significantly among the selected strains. Noticeably, the wild domesticated strain Ac13 of A. cornea mushroom showed the shortest fruit development time (80 days). Similarly, the hybrid strains including Ac3 and Ac15 possessed the highest biological efficiency (82.40 and 94.84%). Hybrid strains Ac18 (15.2%) and cultivated strains Ac33 (15.6%) showed the highest content of crude polysaccharides, while cultivated strains Ac1 and Ac33, demonstrated the highest content of total polysaccharides in the fruiting body (216 mg. g-1 and 200 mg. g-1). In the case of mineral content, the highest zinc contents were observed from the cultivated strain Ac46 (486.33 mg·kg-1). The maximum iron content was detected from the hybrid strain Ac3 (788 mg·kg-1), and the wild domesticated strain Ac28 (350 mg·kg-1). The crude polysaccharides of the A. cornea strain showed significant antioxidant potential, and the ability of Ac33 and Ac24 to scavenge DPPH radicals and ABTS, which was significantly improved compared to other strains, respectively. Principal component analysis was applied to examine the agronomic traits and chemical compounds of various strains of A. cornea mushrooms. The results revealed that cultivated, wild domesticated, and hybrid strains of A. cornea exhibited distinct characteristics in terms of growth, yield, and nutritional properties. Conclusion: The crude polysaccharides from A. cornea mushroom strains act as natural antioxidants, the wild, hybrid, and commercial A. cornea mushroom strains can achieve rapid growth, early maturation, and high yields. The evaluation of biochemical indexes and nutritional characteristics of strains with excellent traits provided a scientific basis for initiating high-quality breeding, provided germplasm resources for the production of "functional food" with real nutritional and health value.

3.
Mycobiology ; 49(4): 406-420, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512084

RESUMO

Gloeostereum incarnatum has edible and medicinal value and was first cultivated and domesticated in China. We sequenced the G. incarnatum monokaryotic strain GiC-126 on an Illumina HiSeq X Ten system and obtained a 34.52-Mb genome assembly sequence that encoded 16,895 predicted genes. We combined the GiC-126 genome with the published genome of G. incarnatum strain CCMJ2665 to construct a genetic linkage map (GiC-126 genome) that had 10 linkage groups (LGs), and the 15 assembly sequences of CCMJ2665 were integrated into 8 LGs. We identified 1912 simple sequence repeat (SSR) loci and detected 700 genes containing 768 SSRs in the genome; 65 and 100 of them were annotated with gene ontology (GO) terms and KEGG pathways, respectively. Carbohydrate-active enzymes (CAZymes) were identified in 20 fungal genomes and annotated; among them, 144 CAZymes were annotated in the GiC-126 genome. The A mating-type locus (MAT-A) of G. incarnatum was located on scaffold885 at 38.9 cM of LG1 and was flanked by two homeodomain (HD1) genes, mip and beta-fg. Fourteen segregation distortion markers were detected in the genetic linkage map, all of which were skewed toward the parent GiC-126. They formed three segregation distortion regions (SDR1-SDR3), and 22 predictive genes were found in scaffold1920 where three segregation distortion markers were located in SDR1. In this study, we corrected and updated the genomic information of G. incarnatum. Our results will provide a theoretical basis for fine gene mapping, functional gene cloning, and genetic breeding the follow-up of G. incarnatum.

4.
J Microbiol ; 59(1): 41-50, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33201433

RESUMO

Gloeostereum incarnatum is an edible medicinal mushroom widely grown in China. Using the whole genome of G. incarnatum, simple sequence repeat (SSR) markers were developed and synthetic primers were designed to construct its first genetic linkage map. The 1,048.6 cm map is composed of 10 linkage groups and contains 183 SSR markers. In total, 112 genome assembly sequences were anchored, representing 16.43 Mb and covering 46.41% of the genome. Selfing populations were used for quantitative trait loci (QTL) targeting, and the composite interval mapping method was used to co-localize the mycelium growth rate (potato dextrose agar and sawdust), growth period, yield and fruiting body length, and width and thickness. The 14 QTLs of agronomic traits had LOD values of 3.20-6.51 and contribution rates of 2.22-13.18%. No linkage relationship was found between the mycelium growth rate and the growth period, but a linkage relationship was observed among the length, width and thickness of the fruiting bodies. Using NCBI's BLAST alignment, the genomic sequences corresponding to the QTL regions were compared, and a TPR-like protein candidate gene was selected. Using whole-genome data, 138 candidate genes were found in four sequence fragments of two SSR markers located in the same scaffold. The genetic map and QTLs established in this study will aid in developing selective markers for agronomic traits and identifying corresponding genes, thereby providing a scientific basis for the further gene mapping of quantitative traits and the marker-assisted selection of functional genes in G. incarnatum breeding programs.


Assuntos
Agaricales/genética , Locos de Características Quantitativas , Agaricales/crescimento & desenvolvimento , China , Mapeamento Cromossômico , Proteínas Fúngicas/genética , Ligação Genética , Marcadores Genéticos/genética , Micélio/genética , Micélio/crescimento & desenvolvimento , Fenótipo
5.
Fungal Biol ; 123(11): 843-853, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31627860

RESUMO

Color is an important quality attribute of fungi, and a useful marker for classification, genetic, and molecular research. However, there is much debate over which enzymes play key regulatory roles in pigment synthesis pathways among different fungi and even within the same species. Auricularia cornea is the most widely cultivated mushroom in the genus Auricularia; 1.834 million tons of this mushroom were produced in 2016 in China. Thus, systematic studies on its color inheritance and the genes encoding key enzymes for pigment synthesis have high scientific and economic value. In this study, the white strain ACW001 and the purple strain ACP004 of A. cornea were used as dikaryotic parents. Selfing populations of ACW001 and ACP004 were constructed with their monokaryotic strains. The fruiting body color of the two populations was consistent with that of their parents, confirming that the two parents were color homozygotes. All strains in the hybrid population of the two parents produced purple fruiting bodies. A robust hybrid strain (ACW001-33×ACP004-33) was selected from the hybrid population, and 87 monokaryotic strains of ACW001-33×ACP004-33 were obtained as a mapping population. Finally, a testcross population was constructed by crossing the mapping population with the test strain ACW001-9. The color genotype of each monokaryotic strain in the mapping population was identified by a fruiting test. The genomes of the two monokaryotic strains ACW001-33 and ACP004-33 were sequenced, and then simple sequence repeat (SSR) and sequence-related amplified polymorphism (SRAP) molecular marker primers were developed. Then, 88 pairs of primers that could distinguish the genotypes of the mapping population were used to construct a genetic linkage map. The genetic linkage map consisted of 12 linkage groups (LGs) spanning 1315.2 cM. The color control locus was preliminarily located at 24.5 cM of the 11th LG. Fine-mapping primers were designed based on sequence differences between ACW001-33 and ACP004-33 in the primary location region. Four color control candidate genes were located in an 8.2-kb region of ACW001-33_contig733 and a 9.2-kb region of ACP004-33_contig802. Homologous alignment and prediction of conserved domain analyses indicated that two of the color control candidate genes encoded proteins with unknown function, and the other two, ACP004_g11815 and ACP004_g11816, encoded glutamyl aminotransferases. These two genes were consecutively arranged on ACP004-33_contig802, and were likely to encode key enzymes in the γ-glutamine-4-hydroxy-benzoate (GHB) pigment synthesis pathway. Primers were designed from the flanking sequences of the two genes and used to analyze the testcross population. Products were amplified only from the 30 testcross strains with purple fruiting bodies, confirming the accuracy of the localization results. We discuss the deficiencies and advantages of map-based cloning in fungi vs. plants, and summarize the steps and requirements of the map-based cloning method for fungi. This study has provided novel ideas and methods for locating functional genes in fungi.


Assuntos
Basidiomycota/genética , Vias Biossintéticas/genética , Clonagem Molecular , Enzimas/genética , Pigmentos Biológicos/biossíntese , Basidiomycota/metabolismo , Mapeamento Cromossômico , Cruzamentos Genéticos , Enzimas/metabolismo , Carpóforos/metabolismo , Análise de Sequência de DNA
6.
J Sci Food Agric ; 99(15): 6911-6921, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31393604

RESUMO

BACKGROUND: This study aimed to evaluate the possibility of cotton waste enrichment with glycine betaine (GB) for production of two strains (P9, P10) of king oyster (Pleurotus eryngii). Cotton waste was used as (100%) control (T0 = cotton waste) and augmented with various combinations of GB, (T1 = 2 mmol L-1 , T2 = 4 mmol L-1 , T3 = 6 mmol L-1 , T4 = 8 mmol L-1 and T5 = 10 mmol L-1 ). The response of king oyster to GB was evaluated by earliness, yield, biological efficiency (BE), minerals (nitrogen, phosphorus, potassium, zinc (Zn), copper (Cu), magnesium (Mg), manganese (Mn), iron (Fe), sodium (Na), calcium (Ca)), total sugars, total soluble solids, reducing sugars, non-reducing sugars, ascorbic acid, proximate (crude protein, carbohydrates, crude fibers, ash, fats) content of fruiting body and Fourier-transform infrared (FTIR) spectroscopy analysis compared with the control substrate (cotton waste). RESULTS: The earliness, yield, and BE were higher as compared to control substrate and increased with an augmentation in the concentration of GB within the cotton waste. Two strains showed (on dry weight basis) 33.9-54.9 mg g-1 nitrogen, 6.8-12.5 mg g-1 phosphorus, 16.9-25.1 mg g-1 potassium, 40.5-64.2 mg kg-1 Zn, 17.1-37.3 mg kg-1 Cu, 1174-1325 mg kg-1 Mg, 20.1-29.1 mg kg-1 Mn, 129-265 mg kg-1 Fe, 779-835 mg kg-1 Ca), 6.3%-11.3% total sugars, 7.3-14.9 °Brix total soluble solids, 2.1-7.3% reducing sugars, 10.4-18.1% crude protein, 3.6-4.4% crude fiber and 5.6-16.7 mg (100 g)-1 on various concentration of GB enrich cotton waste. Cotton waste enriched with GB significantly affected nutritional profile of king oyster mushroom. CONCLUSION: The results revealed that GB enriched cotton waste can be used as an innovative substrate to enhance the yield and quality of king oyster mushroom. © 2019 Society of Chemical Industry.


Assuntos
Betaína/metabolismo , Meios de Cultura/metabolismo , Glicina/metabolismo , Gossypium/microbiologia , Pleurotus/química , Pleurotus/metabolismo , Resíduos/análise , Betaína/análise , Meios de Cultura/química , Glicina/análise , Gossypium/metabolismo , Minerais/metabolismo , Nitrogênio/análise , Nitrogênio/metabolismo , Fósforo/análise , Fósforo/metabolismo , Pleurotus/genética , Pleurotus/crescimento & desenvolvimento
7.
Mycobiology ; 46(1): 72-78, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29998035

RESUMO

The fruiting body pattern is an important agronomic trait of the edible fungus Auricularia auricula-judae, and an important breeding target. There are two types of fruiting body pattern: the cluster type and the chrysanthemum type. We identified the fruiting body pattern of 26 test strains, and then constructed two different near-isogenic pools. Then, we developed sequence characterized amplified region (SCAR) molecular markers associated with the fruiting body pattern based on sequence-related amplified polymorphism (SRAP) markers. Ten different bands (189-522 bp) were amplified using 153 pairs of SRAP primers. The SCAR marker "SCL-18" consisted of a single 522-bp band amplified from the cluster-type strains, but not the chrysanthemum strains. This SCAR marker was closely associated with the cluster-type fruiting body trait of A. auricula-judae. These results lay the foundation for further research to locate and clone genes controlling the fruiting body pattern of A. auricula-judae.

8.
J Microbiol ; 55(10): 792-799, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28956350

RESUMO

Auricularia auricula-judae is a traditional edible fungus that is cultivated widely in China. In this study, a genetic linkage map for A. auricula-judae was constructed using a mapping population consisting of 138 monokaryons derived from a hybrid strain (A119-5). The monokaryotic parent strains A14-5 and A18-119 were derived from two cultivated varieties, A14 (Qihei No. 1) and A18 (Qihei No. 2), respectively. In total, 130 simple sequence repeat markers were mapped. These markers were developed using the whole genome sequence of A. auricula-judae and amplified in A14-5, A18- 119, and the mapping population. The map consisted of 11 linkage groups (LGs) spanning 854 cM, with an average interval length of 6.57 cM. A testcross population was derived from crossing between the monokaryon A184-57 (from the wild strain A184 as a tester strain) and the mapping population. Important agronomic trait-related QTLs, including mycelium growth rate on potato dextrose agar for the mapping population, mycelium growth rate on potato dextrose agar and sawdust for the testcross population, growth period (days from inoculation to fruiting body harvesting), and yield for the testcross population, were identified using the composite interval mapping method. Six mycelium growth raterelated QTLs were identified on LG1 and LG4, two growth period-related QTLs were identified on LG2, and three yieldrelated QTLs were identified on LG2 and LG6. The results showed no linkage relationship between mycelium growth rate and growth period. The present study provides a foundation for locating genes for important agronomic characteristics in A. auricula-judae in the future.


Assuntos
Basidiomycota/genética , Mapeamento Cromossômico , Genes Fúngicos/genética , Ligação Genética/genética , Locos de Características Quantitativas/genética , Basidiomycota/classificação , Basidiomycota/crescimento & desenvolvimento , Meios de Cultura , DNA Fúngico , Marcadores Genéticos , Repetições de Microssatélites/genética , Micélio/genética , Micélio/crescimento & desenvolvimento , Fenótipo , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...