Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 796, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35145082

RESUMO

Every year, malaria kills approximately 405,000 people in Sub-Saharan Africa, most of them children under the age of five years. In many countries, progress in malaria control has been threatened by the rapid spread of resistance to antimalarial drugs and insecticides. Novel genetic mosquito control approaches could play an important role in future integrated malaria control strategies. In July 2019, the Target Malaria consortium proceeded with the first release of hemizygous genetically-modified (GM) sterile and non-transgenic sibling males of the malaria mosquito Anopheles coluzzii in Burkina Faso. This study aimed to determine the potential fitness cost associated to the transgene and gather important information related to the dynamic of transgene-carrying mosquitoes, crucial for next development steps. Bayesian estimations confirmed that GM males had lower survival and were less mobile than their wild type (WT) siblings. The estimated male population size in Bana village, at the time of the release was 28,000 - 37,000. These results provide unique information about the fitness and behaviour of released GM males that will inform future releases of more effective strains of the A. gambiae complex.


Assuntos
Anopheles/genética , Infertilidade , Malária/transmissão , Mosquitos Vetores/genética , Animais , Teorema de Bayes , Burkina Faso , Inseticidas , Masculino , Controle de Mosquitos/métodos , Densidade Demográfica
2.
Parasit Vectors ; 14(1): 82, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33509273

RESUMO

BACKGROUND: Since the late 1990s, malaria control programmes have relied extensively on mass bednet distribution and indoor residual spraying. Both interventions use pesticides and target mosquitoes coming indoors either to feed or to rest. Unfortunately, these intensified vector control campaigns have resulted in mosquito populations with high levels of resistance to most of the chemical compounds used against them and which are increasingly exophagic and exophillic, hence difficult to monitor indoors. Consequently, there is an urgent need for novel tools to sample outdoor anopheline populations for monitoring interventions and disease surveillance programmes. METHODOLOGIES: In this study, we tested several modifications and configurations of the BioGents® Sentinel (BGS) trap, designed with the aim to increase its efficacy for sampling malaria vector species. Traps were used with chemical attractants and CO2, and the impacts of trap position, trap colour contrast combination and the addition of a heat source were tested in two studies conducted in the Sudano-Sahelian region of Burkina Faso and Mali. RESULTS: The results show that of all the configurations tested, the addition of a heat source to the BGS trap with the original colour combination and an upward positioning resulted in a 1.8- and 5.9-fold increase in host-seeking Anopheles gambiae (s.l.) females in the experiments performed in Burkina Faso and Mali, respectively. BGS with heat traps, referred to as BGSH traps, captured An. gambiae (s.l.), An. pharoensis, An. coustani, Culex and Mansonia spp. Importantly, the results suggest that their efficacy does not depend on the close proximity of nearby hosts in houses. CONCLUSIONS: The results suggest that BGSH traps can be an effective scalable tool for sampling outdoor anopheline vector populations. Further developments enabling CO2 and heat generation for longer periods of time would further improve the trap's versatility for large-scale surveillance programmes.


Assuntos
Anopheles , Controle de Mosquitos/métodos , Animais , Anopheles/fisiologia , Comportamento Animal , Burkina Faso , Vetores de Doenças , Temperatura Alta , Mordeduras e Picadas de Insetos , Malária/transmissão , Mali , Mosquitos Vetores/fisiologia , Odorantes
3.
Parasit Vectors ; 11(Suppl 2): 654, 2018 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-30583720

RESUMO

Major efforts are currently underway to develop novel, complementary methods to combat mosquito-borne diseases. Mosquito genetic control strategies (GCSs) have become an increasingly important area of research on account of their species-specificity, track record in targeting agricultural insect pests, and their environmentally non-polluting nature. A number of programs targeting Aedes and Anopheles mosquitoes, vectors of human arboviruses and malaria respectively, are currently being developed or deployed in many parts of the world. Operationally implementing these technologies on a large scale however, beyond proof-of-concept pilot programs, is hampered by the absence of adequate sex separation methods. Sex separation eliminates females in the laboratory from male mosquitoes prior to release. Despite the need for sex separation for the control of mosquitoes, there have been limited efforts in recent years in developing systems that are fit-for-purpose. In this special issue of Parasites and Vectors we report on the progress of the global Coordinated Research Program on "Exploring genetic, molecular, mechanical and behavioural methods for sex separation in mosquitoes" that is led by the Insect Pest Control Subprogramme of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture with the specific aim of building efficient sex separation systems for mosquito species. In an effort to overcome current barriers we briefly highlight what we believe are the three main reasons why progress has been so slow in developing appropriate sex separation systems: the availability of methods that are not scalable, the difficulty of building the ideal genetic systems and, finally, the lack of research efforts in this area.


Assuntos
Aedes/genética , Anopheles/genética , Malária/prevenção & controle , Controle de Mosquitos , Mosquitos Vetores/genética , Aedes/fisiologia , Animais , Anopheles/fisiologia , Feminino , Tecnologia de Impulso Genético , Humanos , Infertilidade , Malária/transmissão , Masculino , Mosquitos Vetores/fisiologia , Análise para Determinação do Sexo
4.
Malar J ; 16(1): 468, 2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-29149898

RESUMO

BACKGROUND: The presence of Plasmodium falciparum gametocytes in peripheral blood is essential for human to mosquito parasite transmission. The detection of submicroscopic infections with gametocytes and the estimation of the gametocyte sex ratio are crucial to assess the human host potential ability to infect mosquitoes and transmit malaria parasites. AIM AND OBJECTIVES: The aim of this work was to develop sensitive and cheap Real Time qPCR assays for large-scale epidemiological surveys, based on detection and amplification of gametocyte sex specific transcripts selected from the literature: the female-specific pfs25 and pf glycerol kinase (pfGK) and the male-specific pfs230p and pf13 transcripts. METHODS: RTqPCR assays were used to test the gametocyte- and sex-specific expression of the target genes using asexual stages of the gametocyteless parasite clone F12 and FACS purified male and female gametocytes of the PfDynGFP/P47mCherry line. Assays were performed on 50 blood samples collected during an epidemiological survey in the Soumousso village, Burkina Faso, West-Africa, and amplification of the human housekeeping gene 18S rRNA was employed to normalize RNA sample variability. RESULTS: SYBR Green assays were developed that showed higher sensitivity compared to Taqman assays at a reduced cost. RTqPCR results confirmed that expression of pfs25 and pfs230p are female and male-specific, respectively, and introduced two novel markers, the female-specific pfGK and the male-specific pf13. A formula was derived to calculate the ratio of male to female gametocytes based on the ratio of male to female transcript copy number. Use of these assays in the field samples showed, as expected, a higher sensitivity of RTqPCR compared to microscopy. Importantly, similar values of gametocyte sex-ratio were obtained in the field samples based on the four different target combinations. CONCLUSION: Novel, sensitive, cheap and robust molecular assays were developed for the detection and quantification of female and male P. falciparum gametocytes. In particular, the RTqPCR assays based on the female-specific pfs25 and the newly described male gametocyte-specific pf13 transcripts, including normalization by the human 18S, reliably assess presence and abundance of female and male gametocytes and enable to determine their sex-ratio in human subjects in endemic areas.


Assuntos
Microscopia/métodos , Plasmodium falciparum/isolamento & purificação , Proteínas de Protozoários/análise , Reação em Cadeia da Polimerase em Tempo Real/métodos , Burkina Faso , Humanos , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...