Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 470: 134120, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38537573

RESUMO

Numerous chlorinated disinfection by-products (DBPs) are produced during the chlorination disinfection of water. Among them, chloroacetic acids (CAAs) are of great concern due to their potential human carcinogenicity. In this study, effective electrocatalytic dechlorination of trichloroacetic acids (TCAA), a typical CAAs, was achieved in the electrochemical system with the three-dimensional (3D) self-supported CoP on cobalt foam modified by carbon nanotubes (CNT/CoP/CF) as the cathode. At a 10 mA cm-2 current density, 74.5% of TCAA (500 µg L-1) was converted into AA within 100 min. In-situ growth of CoP increased the effective electrochemical surface area of the electrode. Electrodeposited CNT promoted electron transfer from the electrode surface to TCAA. Therefore, the production of surface-adsorbed atomic hydrogen (H*) on CNT/CoP/CF was improved, further resulting in excellent electrochemical dechlorination of TCAA. The dechlorination pathway of TCAA proceeded into acetic acids via direct electronic transfer and H*-mediated reduction on CNT/CoP/CF electrode. Additionally, the electroreduction efficiency of CNT/CoP/CF for TCAA exceeded 81.22% even after 20 cycles. The highly efficient TCAA reduction performance (96.57%) in actual water revealed the potential applicability of CNT/CoP/CF in the complex water matrix. This study demonstrated that the CNT/CoP/CF is a promising non-noble metal cathode to remove chlorinated DBPs in practice.

2.
Water Res ; 251: 121114, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38218074

RESUMO

Electrochemical ammonium (NH4+) storage (EAS) has been established as an efficient technology for NH4+ recovery from wastewater. However, there are scientific difficulties unsolved regarding low storage capacity and selectivity, restricting its extensive engineering applications. In this work, electrochemically selective NH4+ recovery from wastewater was achieved by coupling hydrogen bonding and charge storage with self-assembled bi-layer composite electrode (GO/V2O5). The NH4+ storage was as high as 234.7 mg N g-1 (> 102 times higher than conventional activated carbon). Three chains of proof were furnished to elucidate the intrinsic mechanisms for such superior performance. Density functional theory (DFT) showed that an excellent electron-donating ability for NH4+ (0.08) and decrease of diffusion barrier (22.3 %) facilitated NH4+ diffusion onto electrode interface. Physio- and electro-chemical results indicated that an increase of interlamellar spacing (14.3 %) and electrochemical active surface area (ECSA, 388.9 %) after the introduction of GO were responsible for providing greater channels and sites toward NH4+ insertion. Both non-ionic chemical-bonding (V5+=O‧‧‧H, hydrogen-bonding) and charge storage were contributed to the higher capacity and selectivity for NH4+. This work offers underlying guideline for exploitation a storage manner for NH4+ recovery from wastewater.


Assuntos
Carvão Vegetal , Águas Residuárias , Ligação de Hidrogênio , Difusão , Eletrodos
3.
J Environ Manage ; 351: 119911, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38150931

RESUMO

Salts including NaCl are the most common food flavoring agents so they are often accumulated in food waste (FW) and have potential impact on anaerobic digestion (AD) of FW. In this study, the enhanced biogas production from two-stage anaerobic digestion (TSAD) of FW by microscale zero-valent iron (ZVI) under different salinity (3, 6, 9, and 15 g NaCl/L) was evaluated. Under salinity stress, ZVI becomes a continue-release electron donor due to the enhanced corrosion and dissolution effect and the slow-down surface passivation, further improving the performance of TSAD. Experimental results revealed that the biogas production including H2 and CH4 from TSAD with 10 g/L ZVI addition was promoted under salinity stress. The maximum H2 and CH4 yield (303.38 mL H2/g-VS and 253.84 mL CH4/g-VS) were observed at the salinity 9 g NaCl/L. Compared with that of zero salinity, they increased by 40.94% and 318.46%, respectively. Additionally, Sedimentibacter, an exoelectrogen that can participate in the direct interspecies electron transfer, also exhibited the highest relative abundance (34.96%) at the salinity 9 g NaCl/L. These findings obtained in this study might be of great importance for understanding the influence of salinity on the enhanced AD by ZVI.


Assuntos
Ferro , Eliminação de Resíduos , Biocombustíveis , Perda e Desperdício de Alimentos , Anaerobiose , Alimentos , Cloreto de Sódio , Salinidade , Metano , Esgotos , Reatores Biológicos
4.
J Colloid Interface Sci ; 634: 440-449, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36542973

RESUMO

Electrocatalytic denitrification is an attractive and effective method for complete elimination of nitrate (NO3-). However, its application is limited by the activity and stability of the electrocatalyst. In this work, a novel bimetallic electrode was synthesized, in which N-doped graphitized carbon sealed with Cu and Fe nanoparticles and immobilized them on nickel foam (CuFe NPs@NC/NF) without any chemical binder. The immobilized Cu-Fe nanoparticles not only facilitated the adsorption of the reactant but also enhanced the electron transfer between the cathode and NO3-, thus promoting the electrochemical reduction of NO3-. Therefore, the as-prepared electrode exhibited enhanced electrocatalytic activity for NO3- reduction. The composite electrode with the Cu/Fe molar ratio of 1:2 achieved the highest NO3- removal (79.4 %) and the lowest energy consumption (0.0023 kW h mg-1). Furthermore, the composite electrode had a robust NO3- removal capacity under various conditions. Benefitting from the electrochlorination on the anode, this electrochemical system achieved nitrogen (N2) selectivity of 94.0 %. Moreover, CuFe NPs@NC/NF exhibited good stability after 15 cycles, which should be attributed to the graphitized carbon layer. This study confirmed that CuFe NPs@NC/NF electrode is a promising and inexpensive electrode with long-term stability for electrocatalytic denitrification.


Assuntos
Carbono , Nitratos , Níquel
5.
J Hazard Mater ; 436: 129253, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35739771

RESUMO

The cathode with low-energy consumption and long-term stability is pivotal to achieve the conversion of nitrate (NO3-) to nitrogen (N2) by electrocatalytic denitrification. Herein, a binder-free electrode was synthesized by directly immobilizing N-doped graphitized carbon layer-encapsulated NiCu bimetallic nanoparticles on nickel foam (NF) (NiCu@N-C/NF) and served as the cathode for electrocatalytic NO3- reduction. Morphological characterization indicated that Ni and Cu nanoparticles were encapsulated by the N-doped graphitized carbon layer and well-dispersed on the surface of NF. Compared with monometallic composite cathode (Cu@N-C/NF and Ni@N-C/NF), NiCu@N-C/NF exhibited better NO3- removal performance (98.63 %) and lower energy consumption (0.007 kW·h mmol-1), which should be attributed to its strong adsorption ability to NO3- and excellent electron transfer property. Meanwhile, its electrocatalytic performance could be maintained in wide initial NO3- concentration (1.79-7.14 mM) and solution pH (3-11). With the assistance of electrochlorination, the N2 selectivity of electrochemical system was up to 99.89 % in the presence of 0.028 M Cl-. More importantly, NiCu@N-C/NF electrode displayed an ultra-high stability during ten recycling experiments. This study indicated that the binderless composite cathode NiCu@N-C/NF had great potential in electrocatalytic NO3- removal from wastewater.

7.
J Hazard Mater ; 435: 128970, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35462188

RESUMO

The activation of peroxymonosulfate (PMS) by Fe(II) or Fe(III) for environmental decontamination is severely limited by the low conversion rate from Fe(III) to Fe(II). Here, we found that this puzzling problem could virtually be solved by introducing trace amounts of S2-. With the addition of 0.2 mM S2-, the bisphenol A (BPA) degradation efficiency and total organic carbon (TOC) removal in PMS/Fe(III) system were improved by 3.8 and 6.0 times, respectively. Meanwhile, the kobs and PMS utilization efficiency also markedly increased by 650% and 160%, respectively. The constructed PMS/Fe(III)/S2- system exhibited a good applicability to a wide pH range (3.2 ~ 9.5) and high resistance to humic acid, Cl- and NO3-. The main reactive oxidant species in PMS/Fe(III)/S2- system were identified by scavenging experiments, electron paramagnetic resonance measurement, chemical probe approach, and 18O isotope-labeling technique. The identification results revealed that FeIVO2+ was the primary reactive oxidant species, while •OH, SO4•-, O2•- and 1O2 were also involved in the degradation of BPA. Finally, the generalizability of PMS/Fe(III)/S2- system was evaluated by varying the target pollutants, oxidants, and reducing S species. The construction of PMS/Fe(III)/S2- system provides some insights into the treatment of organic wastewaters containing S2-, e.g., from refineries and tanneries.


Assuntos
Compostos Férricos , Peróxidos , Compostos Ferrosos , Cinética , Oxidantes , Sulfetos
8.
Environ Sci Pollut Res Int ; 29(41): 62347-62360, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35397030

RESUMO

Achieving advanced treatment of phosphorus (P) to prevent water eutrophication and meet increasingly stringent wastewater discharge standard is an important goal of water management. In this study, a low-cost, high-efficiency phosphate adsorbent zirconium-modified biochar (ZrBC) was successfully synthesized through co-precipitation method, in which the biochar was prepared from the pyrolysis of peanut shell powder. ZrBC exhibited strong adsorption ability to low-concentration phosphate (< 1 mg·L-1) in water, and the phosphate removal reached 100% at the investigated dosage range (0.1-1.0 mg·L-1). The adsorption process could be described well by pseudo-second-order model and Langmuir isotherm model, indicating that the phosphate adsorption by ZrBC was mainly a chemical adsorption and single-layer adsorption process. The calculated static maximum phosphate adsorption capacity was 58.93 mg·g-1 at 25 °C. The ligand exchange between surface hydroxyl groups and phosphate was the main mechanism for the phosphate adsorption on ZrBC. The presence of coexisting anions except for SO42- had little effect on the phosphate removal. At the column experiment, ZrBC showed superior treatment capacities for simulated secondary effluents and the breakthrough time for 0.5 mg·L-1 effluent phosphate concentration reached 190 h. ZrBC highlights the potential as an effective and environment-friendly adsorbent for the removal of low-concentration phosphate from secondary effluents of municipal wastewater treatment plants (WWTPs).


Assuntos
Poluentes Químicos da Água , Zircônio , Adsorção , Carvão Vegetal , Concentração de Íons de Hidrogênio , Cinética , Fosfatos , Água , Poluentes Químicos da Água/análise
9.
Sci Total Environ ; 811: 151421, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-34748833

RESUMO

The internal Fe2+/Fe3+ cycle is important for peroxymonosulfate (PMS) activation by iron-based materials to produce the reactive oxidative species (ROS) for the breakdown of organic contaminants. Previous studies have focused on the contribution of heterogeneous sulfur species to the Fe2+/Fe3+ cycle such as lattice S(-II) and surface SO32- of iron sulfides. In this study, we found that the dissolved S(-II) from mackinawite (FeS) had a substantial contribution to the Fe2+/Fe3+ cycle. Furthermore, the oxidation intermediates of the dissolved S(-II) such as S2O32- and SO32- ions could convert Fe3+ to Fe2+ in solution. The elimination of target organic pollutant bisphenol A (BPA) derived from PMS activation triggered by the dissolved Fe2+ might be enhanced by the equivalent dissolved S(-II) in the FeS/PMS system. These results revealed that previous studies underestimated the significance of PMS activation by dissolved Fe2+ of iron sulfides to organic pollutant degradation. Moreover, SO4•- and •OH were more likely to be the main ROS for BPA degradation in the FeS/PMS system compared with FeO2+. Considering that the metal sulfides have been widely used to activate PMS, H2O2 and peroxydisulfate, this study offers a new perspective on the function of sulfur in these advanced oxidation processes.


Assuntos
Poluentes Ambientais , Compostos Ferrosos , Peróxido de Hidrogênio , Peróxidos , Enxofre
10.
Chemosphere ; 287(Pt 1): 132061, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34523448

RESUMO

The photo-Fenton system exhibits great potential in environmental remediation. However, photo-Fenton process suffers from slow reaction kinetics, which is caused by the low yield of available charge carriers and active radicals. In this work, the 2D/2D FeNi-layered double hydroxide/bimetal-organic frameworks nanosheets (FeNi-LDH/BMNSs) photocatalyst was fabricated via an in-situ semi-sacrificial template strategy. The optimized FeNi-LDH/BMNSs + H2O2+Vis system showed excellent tetracycline hydrochloride (TC-HCl) removal rate of 95.76% in 60 min. Besides, the high TC-HCl degradation rates (above 80%) are obtained in a wide pH range and the total organic carbon (TOC) removal rate of 48.98% was remained after four cycles. Experiments and characterizations identified the fast catalysis process were ascribed to the synergetic effect between 2D/2D heterojunctions and Lewis acid sites with mixed-valence (Fe (III)/Ni (II)) in FeNi-LDH/BMNSs. As a result, the catalysis of H2O2 and the reduction of O2 was accelerated by the continuous generation of Fe (II) and available photogenerated electrons, respectively, producing abundant active radicals including OH and O2-. Finally, this photo-Fenton system exhibited high removal rate to oxycycline, levofloxacin, norfloxacin and doxycycline and showed excellent performance for TC-HCl removal in different composed wastewater. The findings provide a new strategy towards creating 2D/2D active heterogeneous catalysts for photo-Fenton catalytic application.


Assuntos
Antibacterianos , Peróxido de Hidrogênio , Catálise , Hidróxidos , Tetraciclina
11.
Huan Jing Ke Xue ; 42(2): 891-899, 2021 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-33742884

RESUMO

Focusing on low biogas yields in the anaerobic co-digestion of waste activated sludge and food waste, the enhancing effects and mechanisms of microscale zero valent iron (mZVI) on anaerobic co-digestion was investigated. The results indicated that the addition of mZVI enhanced the methanogenesis stage of co-digestion but had no significant effect on the solubilization, hydrolysis, and acidification stages. With a dosage of 10 g·L-1 mZVI, the cumulative methane yield (based on VS) within 15 days reached 238.68 mL·g-1, which was 20.05% higher than the control group. The mechanism analysis showed that mZVI promoted electron transport system (ETS) activity (based on INTF/TS), which increased to 21.50 mg·(g·h)-1 with 10 g·L-1 mZVI compared to 13.43 mg·(g·h)-1 in the control group. Furthermore, mZVI enhanced direct interspecies electron transfer (DIET) between specific bacteria and methanogens. Microbial community analysis demonstrated that the abundance of DIET-related microorganisms, such as Syntrophomonas, Methanosarcina, and Methanobacterium, was higher in presence of mZVI.

12.
Water Res ; 193: 116881, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33571901

RESUMO

A highly active and selective electrode is essential in electrochemical denitrification. Although the emerging Cu-based electrode has attracted intensive attentions in electrochemical NO3- reduction, the issues such as restricted activity and selectivity are still unresolved. In our work, a binder-free composite electrode (Cu3P/CF) was first prepared by direct growth of copper phosphide on copper foam and then applied to electrochemical NO3- reduction. The resulting Cu3P/CF electrode showed enhanced electrochemical performance for NO3- reduction (84.3%) with high N2 selectivity (98.01%) under the initial conditions of 1500 mg L-1 Cl- and 50 mg N L-1 NO3-. The cyclic voltammetry (CV) and electrochemical impedance spectra (EIS) demonstrated that electrochemical NO3- reduction was achieved through electron transfer between NO3- and Cu0 originated from CF. The in-situ grown Cu3P served as the bifunctional catalyst, the electron mediator or bridge to facilitate the electron-transfer for NO3- reduction and the stable catalyst to produce atomic H* toward NO2- conversion. Meanwhile, the Cu3P/CF remained its electrocatalytic activity even after eight cyclic experiments. Finally, a 2-stage treatment strategy, pre-oxidation by Ir-Ru/Ti anode and post-reduction by Cu3P/CF cathode, was designed for electrochemical chemical oxygen demand (COD) and total nitrogen (TN) removal from real wastewater.


Assuntos
Cobre , Nitratos , Eletrodos , Nitrogênio , Óxidos de Nitrogênio
13.
J Colloid Interface Sci ; 586: 551-562, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33246653

RESUMO

A novel in-situ N-doped carbon nanoparticles (NCNs) was prepared through direct pyrolysis of N-rich polyaniline (PANI) without using external N-containing precursor and the as-prepared materials were employed as metal-free peroxydisulfate (PDS) activator for bisphenol A (BPA) degradation. The catalyst derived from PANI carbonization at 900 °C (NCNs-9) displayed the excellent catalytic activity to activate PDS, resulting in 96.0% BPA degradation efficiency within 20 min. The catalytic activity of NCNs was closely related to their structure-composition, and higher graphitic N content and larger BET surface area were beneficial to the generation of reactive oxygen species (ROS). The quenching tests and electron paramagnetic resonance (EPR) demonstrated that BPA degradation in PDS/NCNs system was accomplished via non-radical (1O2) and radical ( ·OH, SO4·-, and O2·-) pathways, in which O2·- was the main ROS. The origin of O2·- was the conversion of dissolved oxygen and the activation of PDS. The possible degradation pathways of BPA were also proposed. This study might provide inspirations to design in-situ N-doped carbon nanoparticles as the PDS activator for efficient degradation of persistent organic compound via advanced oxidation processes (AOPs).

14.
Chemosphere ; 264(Pt 2): 128548, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33059291

RESUMO

The electro-assisted autohydrogenotrophic reduction of perchlorate (ClO4-) was investigated in a dual-chamber biofilm-electrode reactor (BER), in which the microbial community was inoculated from natural sediments. To avoid the effect of extreme pH and direct electron transfer on perchlorate reduction, a novel cathode configuration was designed. The pH of the cathode compartment was successfully controlled in the range of 7.2-8.4 during whole experiment. The effective biological autohydrogenotrophic reduction of perchlorate was achieved using hydrogen generated in-situ on the electrode surface, and the removal rate of 10 mg L-1 perchlorate reached 98.16% at HRT of 48 h. The highest perchlorate removal flux reached to 1498.420 mg m-2·d-1 with a 0.410 kW·h g-perchlorate-1 energy consumption. The microbial community evolution in the BER was determined by high-throughput sequencing and the results indicated that the Firmicutes and Bacteroidetes were dominant at phylum level when perchlorate concentration was 10 mg L-1 or lower. And the Proteobacteria became ascendant at the perchlorate concentration of 20 mg L-1. The functional populations for perchlorate reduction were successfully enriched including Nitrosomonas (30%), Thermomonas (9%), Comamonas (8%) and Hydrogenophaga (3%). Meanwhile, the proportion of functional population in biofilm linked to perchlorate concentration. With the increase of influent perchlorate concentration, the perchlorate-reducing bacteria (PRB) were enriched successfully and became ascendant.


Assuntos
Microbiota , Percloratos , Bactérias/genética , Biofilmes , Reatores Biológicos , Eletrodos , Nitratos , Oxirredução
15.
Bioresour Technol ; 316: 123901, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32739579

RESUMO

The enhancement of zerovalent iron (ZVI) on anaerobic digestion (AD) has been proved, but there are still some problems that constrain the large-scale application of ZVI, such as the destruction of cell membrane and the inhibition of methanogenesis led by rapid H2 accumulation. Aiming at these problems, sulfidated microscale zerovalent iron (S-mZVI) was employed to evaluate its effect on anaerobic co-digestion (AcoD) of waste activated sludge (WAS) and food waste (FW). Experimental results showed that S-mZVI promoted the direct interspecies electron transfer (DIET) between specific bacteria and methanogens, resulting in higher methane yield. At S-mZVI 10 g/L, the cumulative methane yield and ETS activity reached 264.78 mL/g-VS and 24.62 mg INTF/(g-TS h), which was 1.33 and 1.83 times that of blank. Microbiological analysis demonstrated that the abundance of DIET-related microorganisms such as Syntrophomonas, Methanosarcina and Methanobacterium increased with the increasing dosage of S-mZVI.


Assuntos
Eliminação de Resíduos , Esgotos , Anaerobiose , Reatores Biológicos , Elétrons , Alimentos , Ferro , Metano
16.
Chemosphere ; 260: 127537, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32682133

RESUMO

In this work, a novel method for complete Cr(Ⅵ) removal was achieved in a single-chamber cell with titanium (Ti) as anode via simultaneous indirect electro-reduction of Cr(Ⅵ) and in-situ precipitation of Cr(Ⅲ). The Cr(Ⅵ) and total Cr removal, and electric energy consumption were optimized as a function of electrochemical reactor, current density, initial Cr(Ⅵ) and chloride (Cl-) concentration, and initial solution pH. The maximum Cr(Ⅵ) and total Cr removal efficiency reached 80.5 and 79.4% respectively within 12 h at current density of 10 mA cm-2 as initial Cr(Ⅵ) concentration was 0.078 mM. Decreasing the initial solution pH was beneficial to Cr(Ⅵ) reduction, but Cr(Ⅲ) precipitation was inhibited, resulting in the poor total Cr removal. The suitable Cl- concentration guaranteed sufficient reducing agents (Ti3+ and Ti2+) for Cr(Ⅵ) removal. The reaction mechanism demonstrated that Ti anode could be corroded to produce Ti3+ and Ti2+, which provided the electrons for reduction of Cr(Ⅵ) to Cr(Ⅲ). Simultaneously, the solid products (Ti2O(6x-y-z+52)Cl2yCr2x(OH)2z(s)) were in-situ formed and precipitated from the solution due to the continuous generation of hydroxyl ion (OH-) from cathode. This study might provide a new electrochemical method with non-precious metal as the electrode for complete Cr(Ⅵ) removal from aqueous media.


Assuntos
Cromo/química , Titânio , Poluentes Químicos da Água/química , Técnicas Eletroquímicas , Eletrodos , Oxirredução , Substâncias Redutoras , Água
17.
Water Res ; 173: 115559, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32028250

RESUMO

Peroxymonosulfate (PMS) is extensively used as an oxidant to develop the sulfate radical-based advanced oxidation processes in the decontamination of organic pollutants and various PMS activation methods have been explored. Visible-light-assisted PMS activation to construct a Fenton-like process has shown a great potential for pollution control. In our work, BiVO4 nanosheets were prepared using a hydrothermal process and used to activate PMS under visible light. A rapid degradation of ciprofloxacin (CIP) was achieved by dosing PMS (0.96 g/L), BiVO4 (0.32 g/L) under visible light with a reaction rate constant of 77.72-fold higher than that in the BiVO4/visible light process. The electron spin resonance and free radical quenching experiments indicate that reactive species of •O2-, h+, •OH and SO4•- all worked, where h+, •OH and SO4•- were found as the dominant contributors to the CIP degradation. The spectroscopic analyses further demonstrate that the photoinduced electrons were directly involved in the PMS activation process. The generated •O2- was partially utilized to activate PMS and more •OH was produced because of the chain reactions between SO4•- and H2O/OH-. In this process, PMS acted as an electron acceptor to transfer the photo-induced charges from the conduction band of BiVO4 and PMS was successfully activated to yield the high-powered oxidative species. From the degradation intermediates of CIP detected by a liquid-chromatography-mass spectrometer, the possible degradation pathways were proposed. The substantially decreased toxicity of CIP after the reaction was also observed. This work might provide new insights into the visible-light-assisted PMS activation mechanisms and is useful to construct environmentally-friendly catalytic processes for the efficient degradation of organic pollutants.


Assuntos
Ciprofloxacina , Peróxidos , Catálise , Luz
18.
J Colloid Interface Sci ; 566: 33-45, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31986307

RESUMO

Persulfate (PS) activation have been extensively considered as a promising technology for removing recalcitrant pollutants, due to their production of radicals with superior oxidation reactivity. However, a catalyst with high reactive and convenient recovery for PS activation still remains to be developed. In this work, the silver-doped bismuth ferrite (Agx-BiFeO3, x = 0.1, 0.2, 0.3 and 0.4) catalysts with variable Ag content were synthesized via a facile sol-gel method and applied as heterogeneous catalyst in PS activation for tetracycline (TC) degradation. Ag0.4-BiFeO3 presented the best catalytic activity compared with other Ag doped BiFeO3 composites, 91% TC could be efficiently removed within 60 min under optimized conditions and the reaction rate constant was 0.0338 min-1. On the basis of the characterization analysis and catalytic test results, Ag could be the effective active site in PS activation and had a significant effect on PS activation. Moreover, the initial pH has negligible effect on the catalytic performance, indicating that Ag0.4-BiFeO3/PS system could work in a wide pH range. The results of electron spin-resonance spectroscopy and radical quenching tests suggested that both SO4- and OH radicals were involved in the Ag0.4-BiFeO3/PS system. The possible mechanism of Ag0.4-BiFeO3 activating PS and the major degradation pathway of TC degradation were proposed. At last, the reusability experiment results proved that Ag0.4-BiFeO3 catalyst still has a high catalytic performance after 4 times used.


Assuntos
Bismuto/química , Compostos Férricos/química , Peróxidos/química , Prata/química , Tetraciclina/química , Catálise , Tamanho da Partícula , Propriedades de Superfície
19.
J Hazard Mater ; 384: 121363, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31610350

RESUMO

Thiosulfinates, a natural antibiotic, existed in all parts of Allium, therefore might be accumulated in large amounts in food waste (FW). FW was often added into waste activated sludge (WAS) anaerobic digestion process as a kind of supplement for nutrition balance. However, the impact of thiosulfinates on methane production and the possible approach to mitigate its inhibition on the co-digestion process could be available in few literatures. This work was carried out in a series of batch experiment at pH 7.0 ±â€¯0.2 and 35 ±â€¯1.0 ℃ to promote the further understanding of this process. The experimental results showed that the methane accumulation decreased from 270.6 ±â€¯13.4 to 16.7 ±â€¯7.0 mL/g VSS (volatile suspended solids) when the initial concentration of thiosulfinates increased from 0 to 2.5 µg/g VSS. The activities of functional enzymes (F420 and CoM) were inhibited by 99.06% and 99.82% compared with control group when reactor contained 2.5 µg/g VSS thiosulfinates. Furthermore, different temperature, pH, and combination pretreat were applied to impair the inhibition of thiosulfinate. Compared with no pretreatment group, methane yield was increased by 2.26, 32.18 and 42.2-fold, respectively which group was under pretreatment method of heat (100 ℃), alkali (pH 9) and combination.


Assuntos
Allium/química , Metano/biossíntese , Esgotos/química , Resíduos Sólidos , Ácidos Sulfínicos/farmacologia , Eliminação de Resíduos Líquidos/métodos , Allium/metabolismo , Anaerobiose , Biocombustíveis/análise , Reatores Biológicos/microbiologia , Liases de Carbono-Enxofre/antagonistas & inibidores , Dissulfetos , Fermentação , Modelos Teóricos , Esgotos/microbiologia , Ácidos Sulfínicos/administração & dosagem , Ácidos Sulfínicos/metabolismo
20.
Bioresour Technol ; 297: 122428, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31786038

RESUMO

Thiosulfinate, a nature antibiotic, existed in all parts of Allium thereby accumulating in kitchen waste vastly. However, few literatures were available related to its influence on volatile fatty acids (VFA) and hydrogen production when kitchen waste digestion technology was applied. This study aimed to explore the inhibitory effect and the relevant mechanism. Experimental results showed that the hydrogen accumulation decreased from 23.2 ± 0.8 to 8.2 ± 0.1 mL/g VSS (volatile suspended solid) and maximal total VFA yield decreased from 765.7 ± 21.2 to 376.4 ± 21.7 mg COD (chemical oxygen demand)/g VSS when the dosage of thiosulfinate increased from 0 to 12.5 µg/g VSS. The mechanism study indicated, compared with control group, that the butyric acid decreased from 59% to 20.1% of total VFA yield when reactor in present of 12.5 µg/g VSS thiosulfinate. Moreover, the relative activities of functional enzymes were inhibited 73.4% (butyryl-CoA) and 72.7% (NADH), respectively.


Assuntos
Eliminação de Resíduos , Esgotos , Anaerobiose , Reatores Biológicos , Ácidos Graxos Voláteis , Fermentação , Alimentos , Hidrogênio , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...