Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 11(6): 6384-6388, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30652856

RESUMO

Lateral heterojunctions in two-dimensional (2D) materials have demonstrated potential for high-performance sensors because of the unique electrostatic conditions at the interface. The increased complexity of producing such structures, however, has prevented their widespread use. We here demonstrate the simple and scalable fabrication of heterojunctions by a one-step synthesis process that yields photodetectors with superior device performance. Catalytic conversion of a solid precursor at optimized conditions was found to produce lateral nanostructured junctions between graphene domains and 3 nm thin amorphous carbon films. Carrier transport in these heterojunctions was found to proceed by minimizing the path through the amorphous carbon barriers, which results in a self-selective Schottky emission process with high uniformity and low emission barriers. We demonstrate the potential of thus produced heterojunctions by realizing a photodetector that combines an ultrahigh detectivity of 1013 Jones with microsecond response time, which represents the highest performance of 2D material heterojunction devices. These attractive features are retained even for millimeter-scale devices, and the demonstrated ability to produce transparent, patterned, and flexible sensors extends lateral heterojunction sensors toward wearable and large-scale electronics.

2.
J Hazard Mater ; 358: 234-242, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29990811

RESUMO

New shape-selectivity of graphene-based materials was discovered on this article. To explore the new selectivity, the structure and surface state of graphene and carbon nanotube were examined firstly, and their specific selectivity was verified and was compared with that of ZSM-5 zeolite in aqueous solutions of tobacco specific nitrosamines (TSNA) along with dyes. These two adsorbents trapped about 55% and 70% of 4-methylnitrosamino-1-3-pyridyl-1-butanone (NNK) but only 3% of N'-nitrosonornicotine (NNN) in solution, having an obvious selectivity for the former, due to its stronger interaction with graphene. NNK on graphene sheet obtained more electrons (0.015 e) and owned larger adsorption energy (15.63 kcal mol-1) than that of NNN (0.003 e, 9.19 kcal mol-1), according to theoretical calculation and FTIR results. More 95 or 136 mg g -1 acid red 88 than methyl orange was captured by graphene or carbon nanotube, demonstrating this special and abnormal selectivity again. With new selectivity, graphene showed a higher capacity (6.9%) and shorter adorption equilibrium time (5 min) for TSNA than the typical selecive sorbent ZSM-5 zeolite (1.7% and 20 min) in tobacco solution but kept the similar selctivity to NNK, paving a new way to control the carcinogens like TSNA in environment.


Assuntos
Grafite/química , Nanotubos de Carbono/química , Nicotiana/química , Nitrosaminas/análise , Adsorção , Modelos Teóricos , Estrutura Molecular , Soluções , Propriedades de Superfície
3.
ACS Appl Mater Interfaces ; 9(32): 26805-26817, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28617581

RESUMO

To meet the requirement of capturing tobacco-specific nitrosamines (TSNA) for environment protection, a unique microenvironment was carefully created inside the channels of mesoporous silica MCM-41. In situ carbonization of template micelles at 923 K, combined with the excess aluminum used in one-pot synthesis of MCM-41, is adopted to tailor the tortuosity of mecsoporous channels, while loaded metal oxides (5 wt %) and the Al component in the framework are employed to exert the necessary electrostatic interaction toward the target carcinogens TSNA in solution. The elaborated microenvironment created in mesoporous sorbents was characterized with XRD, N2 adsorption-desorption, TEM, XPS, and TG-DSC methods. Various solutions of Burley- and Virginia-type tobaccos were used to assess the adsorption performance of new mesoporous sorbents, and the influence of the solid-to-liquid ratio, adsorption time, and loading amount of CuO on the adsorption was carefully examined. The representative sample 5%Cu/AM-10c could capture 27.2% of TSNA in Burley tobacco solution, and its capacity reached 0.3 mg g-1 in Snus tobacco extract solution, offering a promising candidate for the protection of the environment and public health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...