Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38676012

RESUMO

Many efforts have been taken in recent years to push atomic gravimeters toward practical applications. We demonstrate an atomic gravimeter named NIM-AGRb2 that is transportable and suitable for high-precision gravity measurements. Constraint-structured active vibration isolation (CS-AVI) is used to reduce the ground vibration noise. The constraint structure in CS-AVI ensures that the isolation platform only has vertical translation, with all other degrees of freedom (DoFs) being constrained. Therefore, the stability of active vibration isolation is enhanced. With the implementation of CS-AVI, the sensitivity of NIM-AGRb2 reached as low as 20.5 µGal/Hz1/2. The short-term sensitivity could be further reduced to 10.8 µGal/Hz1/2 in a seismologic observation station. Moreover, we evaluated the system noise of the gravimeter, and the results were consistent with our observations.

2.
Nanoscale ; 16(11): 5487-5503, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38393670

RESUMO

Photocatalysis is a promising technology to resolve energy and environmental issues, where the design of high-efficiency photocatalysts is the central task. As an emerging family of photocatalysts, semiconducting metal-organic frameworks (MOFs) with remarkable features have demonstrated great potential in various photocatalytic fields. Compared to MOF-based photocatalysts with a single component, construction of S-scheme heterojunctions can render MOFs with enhanced charge separation, redox capacity and solar energy utilization, and thus improved photocatalytic performance. Herein, an overview of the recent advances in the design of MOF-based S-scheme heterojunctions for photocatalytic applications is provided. The basic principle of S-scheme heterojunctions is introduced. Then, three types of MOF-based S-scheme heterojunctions with different compositions are systematically summarized including MOF/non-MOF, MOF-on-MOF and MOF-derived heterojunctions. Afterwards, the enhanced performances of MOF-based S-scheme heterojunctions in hydrogen production, CO2 reduction, C-H functionalization, H2O2 production and wastewater treatment are highlighted. Lastly, the current challenges and future prospects regarding the design and applications of MOF-based S-scheme heterojunctions are discussed to inspire the further development of this emerging field.

3.
Drug Deliv ; 30(1): 2287966, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38083803

RESUMO

Platinum-based drugs are widely used as first-line anti-tumor chemotherapy agents. However, they also have nonnegligible side effects due to the free drugs in circulation. Therefore, it is necessary to develop efficient and safe delivery systems for better tumor cell targeting. Hydrogel is a promising anti-tumor drug carrier that can form a platinum/hydrogel combination system for drug release, which has shown better anti-tumor effects in some studies. However, there is a lack of systematic summary in this field. This review aims to provide a comprehensive overview of the platinum/hydrogel combination system with the following sections: firstly, an introduction of platinum-based drugs; secondly, an analysis of the platinum/hydrogel combination system; and thirdly, a discussion of the advantages of the hydrogel-based delivery system. We hope this review can offer some insights for the development of the platinum/hydrogel combination system for better cancer therapy.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Sistemas de Liberação de Medicamentos , Hidrogéis , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Platina/uso terapêutico
4.
Phys Chem Chem Phys ; 25(46): 31628-31635, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37982294

RESUMO

Two-dimensional (2D) layered transition metal dichalcogenides such as MoS2 have been viewed as the most favorable candidates for replacing noble metals in catalyzing the hydrogen evolution reaction in water splitting owing to their earth abundance, superb chemical stability, and appropriate Gibbs free energy. However, due to its low number of catalytic sites and basal catalytic inertia, the pristine MoS2 displayed intrinsically unsatisfactory HER catalytic activity. Here, the hydrogen evolution catalytic activities of nanostructured MoS2 powder before and after plasma modification with nitrogen doping were experimentally compared, and the influence of treatment parameters on the hydrogen evolution catalytic performance of MoS2 has been studied. The feasibility of regulating hydrogen evolution catalytic activity by nitrogen doping of MoS2 was verified based on density functional theory calculations. Our work demonstrates a more convenient and faster way to develop cheap and efficient MoS2-based catalysts for electrochemical hydrogen evolution reactions. Additionally, theoretical studies reveal that N-doped MoS2 exhibits strong hybridization between Mo-d and N-p states, causing magnetism to evolve, as confirmed by experiments.

5.
Nanomaterials (Basel) ; 13(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36903739

RESUMO

Layered transition metal dichalcogenides (TMDs) provide a favorable research platform for the advancement of spintronics and valleytronics because of their unique spin-valley coupling effect, which is attributed to the absence of inversion symmetry coupled with the presence of time-reversal symmetry. To maneuver the valley pseudospin efficiently is of great importance for the fabrication of conceptual devices in microelectronics. Here, we propose a straightforward way to modulate valley pseudospin with interface engineering. An underlying negative correlation between the quantum yield of photoluminescence and the degree of valley polarization was discovered. Enhanced luminous intensities were observed in the MoS2/hBN heterostructure but with a low value of valley polarization, which was in stark contrast to those observed in the MoS2/SiO2 heterostructure. Based on the steady-state and time-resolved optical measurements, we reveal the correlation between exciton lifetime, luminous efficiency, and valley polarization. Our results emphasize the significance of interface engineering for tailoring valley pseudospin in two-dimensional systems and probably advance the progression of the conceptual devices based on TMDs in spintronics and valleytronics.

6.
Rev Sci Instrum ; 92(5): 054503, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243282

RESUMO

For absolute gravimeters, which play important roles in geophysics and geological exploration, an ultra-low-frequency vertical vibration isolator is necessary to achieve the required measurement precision. A novel active vibration isolator that uses a geometric anti-spring (GAS) structure has been proposed by our team at Tsinghua University previously, but its performance is mainly limited by the large-scale drift in the detection signal of the system. In this paper, after a brief theoretical introduction to the overall system, recent improvements in this novel vibration isolator are presented. The main improvements to the isolator are the use of new blades in the GAS structure and the addition of an extra compensation circuit to eliminate the drift. The improved prototype has a resonance period of 29.2 s and a continuous working time of several days, as compared with the resonance period of 19.2 s and a working time lasting only several minutes of the previous prototype. Experiments show that the improved prototype performs well in the homemade T-1 laser-interferometry absolute gravimeter. The standard error of the mean (SEM) of a 50-drop measurement performed in Tsinghua University is reduced significantly from 404 µGal (1 µGal = 1 × 10-8 m s-2) without the vibration isolator to 10.8 µGal with the improved prototype at its best level. Additionally, the SEM of a 50-set measurement (including 800 drops) lasting for 25 h achieves 5.9 µGal with the improved prototype.

7.
Zookeys ; 833: 59-74, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31015776

RESUMO

The morphology of many insect species is usually influenced by environmental factors and therefore high phenotypic variation exists even within a species. This causes difficulty and uncertainty in species taxonomy, which can be remedied by using molecular data and integrative taxonomy. Astegopteryxbambusae and A.bambucifoliae are currently regarded as two closely related aphid species with similar bamboo hosts and overlapping distributions in the oriental region. However, in practice it is hard to distinguish between them. By incorporating molecular data from four mitochondrial and nuclear genes as well as morphological information from an extensive collection of live specimens, the present study indicates that A.bambucifoliae is a junior synonym of A.bambusae. The data also indicate that large-scale geographic patterns of population differentiation may exist within this species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...