Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858079

RESUMO

Tau pathologies are detected in the brains of some of the most common neurodegenerative diseases including Alzheimer's disease (AD), Lewy body dementia (LBD), chronic traumatic encephalopathy (CTE), and frontotemporal dementia (FTD). Tau proteins are expressed in six isoforms with either three or four microtubule-binding repeats (3R tau or 4R tau) due to alternative RNA splicing. AD, LBD, and CTE brains contain pathological deposits of both 3R and 4R tau. FTD patients can exhibit either 4R tau pathologies in most cases, or 3R tau pathologies less commonly in Pick's disease, which is a subfamily of FTD. Here, we report the isoform-specific roles of tau in FTD. The P301L mutation, linked to familial 4R tau FTD, induces mislocalization of 4R tau to dendritic spines in primary hippocampal cultures that were prepared from neonatal rat pups of both sexes. Contrastingly, the G272V mutation, linked to familial Pick's disease, induces phosphorylation-dependent mislocalization of 3R tau but not 4R tau proteins to dendritic spines. The overexpression of G272V 3R tau but not 4R tau proteins leads to the reduction of dendritic spine density and suppression of miniature excitatory synaptic currents (mEPSCs) in 5-week-old primary rat hippocampal cultures. The decrease in mEPSC amplitude caused by G272V 3R tau is dynamin dependent whereas that caused by P301L 4R tau is dynamin independent, indicating that the two tau isoforms activate different signaling pathways responsible for excitatory synaptic dysfunction. Our 3R and 4R tau studies here will shed new light on diverse mechanisms underlying FTD, AD, LBD, and CTE.Significance statement Frontotemporal dementia is the third most common form of dementia caused by neurodegeneration with diverse clinical presentations. Here, we report distinct cellular mechanisms that may explain some of the similarities and differences between diverse forms of frontotemporal dementia. Tau proteins are composed of six isoforms. We found that although all isoforms can cause neural deficits, each isoform may impair the structures and functions of neurons with different temporal dynamics or through different mechanisms. The mechanistic studies of isoform-specific tau-mediated synaptic impairments reported here will add valuable information to the current molecular and cellular framework, by which diverse tau isoforms cause brain deficits in frontotemporal dementia and other neurodegenerative diseases including Alzheimer's diseases, Lewy body dementia, and chronic traumatic encephalopathy.

2.
ACS Chem Neurosci ; 13(10): 1549-1557, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35522720

RESUMO

Synaptic and cognitive deficits mediated by a severe reduction in excitatory neurotransmission caused by a disproportionate accumulation of the neuronal protein tau in dendritic spines is a fundamental mechanism that has been found repeatedly in models of tauopathies, including Alzheimer's disease, Lewy body dementia, frontotemporal dementia, and traumatic brain injury. Synapses thus damaged may contribute to dementia, among the most feared cause of debilitation in the elderly, and currently there are no treatments to repair them. Caspase-2 (Casp2) is an essential component of this pathological cascade. Although it is believed that Casp2 exerts its effects by hydrolyzing tau at aspartate-314, forming Δtau314, it is also possible that a noncatalytic mechanism is involved because catalytically dead Casp2 is biologically active in at least one relevant cellular pathway, that is, autophagy. To decipher whether the pathological effects of Casp2 on synaptic function are due to its catalytic or noncatalytic properties, we discovered and characterized a new Casp2 inhibitor, compound 1 [pKi (Casp2) = 8.12], which is 123-fold selective versus Casp3 and >2000-fold selective versus Casp1, Casp6, Casp7, and Casp9. In an in vitro assay based on Casp2-mediated cleavage of tau, compound 1 blocked the production of Δtau314. Importantly, compound 1 prevented tau from accumulating excessively in dendritic spines and rescued excitatory neurotransmission in cultured primary rat hippocampal neurons expressing the P301S tau variant linked to FTDP-17, a familial tauopathy. These results support the further development of small-molecule Casp2 inhibitors to treat synaptic deficits in tauopathies.


Assuntos
Demência Frontotemporal , Tauopatias , Animais , Caspase 2/metabolismo , Modelos Animais de Doenças , Demência Frontotemporal/metabolismo , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Ratos , Transmissão Sináptica , Tauopatias/metabolismo , Proteínas tau/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(46): 29069-29079, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33139536

RESUMO

Chronic traumatic encephalopathy (CTE) is associated with repeated traumatic brain injuries (TBI) and is characterized by cognitive decline and the presence of neurofibrillary tangles (NFTs) of the protein tau in patients' brains. Here we provide direct evidence that cell-scale mechanical deformation can elicit tau abnormalities and synaptic deficits in neurons. Using computational modeling, we find that the early pathological loci of NFTs in CTE brains are regions of high deformation during injury. The mechanical energy associated with high-strain rate deformation alone can induce tau mislocalization to dendritic spines and synaptic deficits in cultured rat hippocampal neurons. These cellular changes are mediated by tau hyperphosphorylation and can be reversed through inhibition of GSK3ß and CDK5 or genetic deletion of tau. Together, these findings identify a mechanistic pathway that directly relates mechanical deformation of neurons to tau-mediated synaptic impairments and provide a possibly exploitable therapeutic pathway to combat CTE.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Encefalopatia Traumática Crônica/metabolismo , Espinhas Dendríticas/metabolismo , Neurônios/metabolismo , Proteínas tau/metabolismo , Animais , Encéfalo/metabolismo , Lesões Encefálicas Traumáticas/patologia , Encefalopatia Traumática Crônica/patologia , Quinase 5 Dependente de Ciclina/metabolismo , Feminino , Glicogênio Sintase Quinase 3 beta/metabolismo , Hipocampo/metabolismo , Humanos , Masculino , Emaranhados Neurofibrilares/metabolismo , Ratos , Proteínas tau/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...