Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Gastroenterol ; 39(5): 436-447, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37523001

RESUMO

PURPOSE OF REVIEW: Early and accurate diagnosis of pancreatic cancer is crucial for improving patient outcomes, and artificial intelligence (AI) algorithms have the potential to play a vital role in computer-aided diagnosis of pancreatic cancer. In this review, we aim to provide the latest and relevant advances in AI, specifically deep learning (DL) and radiomics approaches, for pancreatic cancer diagnosis using cross-sectional imaging examinations such as computed tomography (CT) and magnetic resonance imaging (MRI). RECENT FINDINGS: This review highlights the recent developments in DL techniques applied to medical imaging, including convolutional neural networks (CNNs), transformer-based models, and novel deep learning architectures that focus on multitype pancreatic lesions, multiorgan and multitumor segmentation, as well as incorporating auxiliary information. We also discuss advancements in radiomics, such as improved imaging feature extraction, optimized machine learning classifiers and integration with clinical data. Furthermore, we explore implementing AI-based clinical decision support systems for pancreatic cancer diagnosis using medical imaging in practical settings. SUMMARY: Deep learning and radiomics with medical imaging have demonstrated strong potential to improve diagnostic accuracy of pancreatic cancer, facilitate personalized treatment planning, and identify prognostic and predictive biomarkers. However, challenges remain in translating research findings into clinical practice. More studies are required focusing on refining these methods, addressing significant limitations, and developing integrative approaches for data analysis to further advance the field of pancreatic cancer diagnosis.


Assuntos
Aprendizado Profundo , Neoplasias Pancreáticas , Humanos , Inteligência Artificial , Pâncreas , Neoplasias Pancreáticas/diagnóstico por imagem , Tomografia Computadorizada por Raios X
2.
Mach Learn Med Imaging ; 14349: 134-143, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38274402

RESUMO

Intraductal Papillary Mucinous Neoplasm (IPMN) cysts are pre-malignant pancreas lesions, and they can progress into pancreatic cancer. Therefore, detecting and stratifying their risk level is of ultimate importance for effective treatment planning and disease control. However, this is a highly challenging task because of the diverse and irregular shape, texture, and size of the IPMN cysts as well as the pancreas. In this study, we propose a novel computer-aided diagnosis pipeline for IPMN risk classification from multi-contrast MRI scans. Our proposed analysis framework includes an efficient volumetric self-adapting segmentation strategy for pancreas delineation, followed by a newly designed deep learning-based classification scheme with a radiomics-based predictive approach. We test our proposed decision-fusion model in multi-center data sets of 246 multi-contrast MRI scans and obtain superior performance to the state of the art (SOTA) in this field. Our ablation studies demonstrate the significance of both radiomics and deep learning modules for achieving the new SOTA performance compared to international guidelines and published studies (81.9% vs 61.3% in accuracy). Our findings have important implications for clinical decision-making. In a series of rigorous experiments on multi-center data sets (246 MRI scans from five centers), we achieved unprecedented performance (81.9% accuracy). The code is available upon publication.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...