Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 26(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34770975

RESUMO

Acyclovir (ACV) is an effective and selective antiviral drug, and the study of its toxicology and the use of appropriate detection techniques to control its toxicity at safe levels are extremely important for medicine efforts and human health. This review discusses the mechanism driving ACV's ability to inhibit viral coding, starting from its development and pharmacology. A comprehensive summary of the existing preparation methods and synthetic materials, such as 5-aminoimidazole-4-carboxamide, guanine and its derivatives, and other purine derivatives, is presented to elucidate the preparation of ACV in detail. In addition, it presents valuable analytical procedures for the toxicological studies of ACV, which are essential for human use and dosing. Analytical methods, including spectrophotometry, high performance liquid chromatography (HPLC), liquid chromatography/tandem mass spectrometry (LC-MS/MS), electrochemical sensors, molecularly imprinted polymers (MIPs), and flow injection-chemiluminescence (FI-CL) are also highlighted. A brief description of the characteristics of each of these methods is also presented. Finally, insight is provided for the development of ACV to drive further innovation of ACV in pharmaceutical applications. This review provides a comprehensive summary of the past life and future challenges of ACV.


Assuntos
Aciclovir/efeitos adversos , Aciclovir/análise , Antivirais/efeitos adversos , Antivirais/análise , Aciclovir/síntese química , Antivirais/síntese química , Humanos , Estrutura Molecular
2.
Exp Ther Med ; 22(4): 1175, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34504620

RESUMO

Filtration barrier injury induced by high glucose (HG) levels leads to the development of diabetic nephropathy. The endothelial glycocalyx plays a critical role in glomerular barrier function. In the present study, the effects of piperazine ferulate (PF) on HG-induced filtration barrier injury of glomerular endothelial cells (GEnCs) were investigated and the underlying mechanism was assessed. Immunofluorescence was used to observe the distribution of the glycocalyx as well as the expression levels of syndecan-1 and Zonula occludens-1 (ZO-1). Endothelial permeability assays were performed to assess the effects of PF on the integrity of the filtration barrier. Protein and mRNA expression levels were measured by western blotting and reverse transcription-quantitative PCR analyses, respectively. In vitro experiments revealed that adenosine monophosphate-activated protein kinase (AMPK) mediated HG-induced glycocalyx degradation and endothelial barrier injury. PF inhibited the HG-induced endothelial barrier injury and restored the expression levels of heparanase-1 (Hpa-1), ZO-1 and occludin-1 by AMPK. In vivo assays demonstrated that PF reduced the expression levels of Hpa-1, increased the expression levels of ZO-1 and attenuated glycocalyx degradation in the glomerulus. These data suggested that PF attenuated HG-induced filtration barrier injury of GEnC by regulating AMPK expression.

3.
Mol Med Rep ; 23(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33760157

RESUMO

Diabetic nephropathy (DN) is a severe microvascular complication of diabetes. Hyperglycemia­induced glomerular mesangial cells injury is associated with microvascular damage, which is an important step in the development of DN. Piperazine ferulate (PF) has been reported to exert protective effects against the progression of DN. However, whether PF prevents high glucose (HG)­induced mesangial cell injury remains unknown. The aim of the present study was to investigate the effects of PF on HG­induced mesangial cell injury and to elucidate the underlying mechanisms. Protein and mRNA expression levels were determined via western blot analysis and reverse transcription­quantitative PCR, respectively. IL­6 and TNF­α levels were measured using ELISA. Reactive oxygen species levels and NF­κB p65 nuclear translation were determined via immunofluorescence analysis. Apoptosis was assessed by measuring lactate dehydrogenase (LDH) release, as well as using MTT and flow cytometric assays. The mitochondrial membrane potential of mesangial cells was determined using the JC­1 kit. The results revealed that LDH release were increased; however, cell viability and mitochondrial membrane potential were decreased in the HG group compared with the control group. These changes were inhibited after the mesangial cells were treated with PF. Moreover, PF significantly inhibited the HG­induced production of inflammatory cytokines and the activation of NF­κB in mesangial cells. PF also attenuated the HG­induced upregulation of the expression levels of fibronectin and collagen 4A1. Furthermore, the overexpression of p66Src homology/collagen (Shc) abolished the protective effect of PF on HG­induced mesangial cell injury. In vivo experiments revealed that PF inhibited the activation of inflammatory signaling pathways, glomerular cell apoptosis and mesangial matrix expansion in diabetic mice. Collectively, the present findings demonstrated that PF attenuated HG­induced mesangial cells injury by inhibiting p66Shc.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Piperazina/farmacologia , Proteínas Repressoras/genética , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/genética , Injúria Renal Aguda/patologia , Animais , Colágeno Tipo IV/genética , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Modelos Animais de Doenças , Fibronectinas/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/toxicidade , Humanos , Hiperglicemia/complicações , Hiperglicemia/tratamento farmacológico , Hiperglicemia/genética , Hiperglicemia/patologia , Interleucina-6/genética , Células Mesangiais/metabolismo , Células Mesangiais/patologia , Camundongos , RNA Mensageiro/genética , Fator de Transcrição RelA/genética , Fator de Necrose Tumoral alfa/genética
4.
Mol Med Rep ; 19(3): 2245-2253, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30664213

RESUMO

Diabetic nephropathy (DN) is among the most common complications of diabetes mellitus. The disorder is associated with a decrease in the activity of the nitric oxide synthase/nitric oxide system. Piperazine ferulate (PF) is widely used for the treatment of kidney disease in China. The aim of the present study was to examine the effects of PF on streptozotocin (STZ)­induced DN and the underlying mechanism of this process. STZ­induced diabetic mice were intragastrically administered PF (100, 200 and 400 mg/kg/body weight/day) for 12 weeks. At the end of the treatment period, the parameters of 24­h albuminuria and blood urea nitrogen, creatinine and oxidative stress levels were measured. Hematoxylin and eosin staining, periodic acid­Schiff staining and electron microscopy were used to evaluate the histopathological alterations. mRNA and protein expression of endothelial nitric oxide synthase (eNOS) were measured by quantitative polymerase chain reaction and western blotting, respectively. PF significantly decreased blood urea nitrogen and creatinine levels and 24­h albuminuria, and it alleviated oxidative stress, improved glomerular basement membrane thickness and caused an upregulation in eNOS expression and activity levels in diabetic mice. In addition, high glucose decreased eNOS expression levels, whereas PF caused a reversal in the nitric oxide (NO) levels of glomerular endothelial cells. The present results suggested that PF exhibited renoprotective effects on DN. The mechanism of its action was associated with the regulation of eNOS expression and activity.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Óxido Nítrico Sintase Tipo III/genética , Piperazina/administração & dosagem , Animais , Glicemia/genética , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Modelos Animais de Doenças , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Camundongos , Óxido Nítrico/genética , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...