Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; 34(6): ar62, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36989016

RESUMO

Mammalian cell migration in open spaces requires F-actin polymerization and myosin contraction. While many studies have focused on myosin's coupling to focal adhesion and stress fibers, the indirect effect of myosin contraction on cell migration through actin depolymerization is not well studied. In this work, we quantified how cell velocity and effective power output are influenced by the rate of actin depolymerization, which is affected by myosin contraction. In addition, we derived scaling laws to provide physical insights into cell migration. Model analysis shows that the cell migration velocity displays a biphasic dependence on the rate of actin depolymerization and myosin contraction. Our model further predicts that the effective cell energy output depends not only on the cell velocity but also on myosin contractility. The work has implications on in vivo processes such as immune response and cancer metastasis, where cells overcome barriers imposed by the physical environment.


Assuntos
Actinas , Miosinas , Animais , Actinas/metabolismo , Miosinas/metabolismo , Movimento Celular/fisiologia , Citoesqueleto de Actina/metabolismo , Fibras de Estresse/metabolismo , Mamíferos/metabolismo
2.
Front Cell Dev Biol ; 10: 903234, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35663404

RESUMO

We have developed much understanding of actin-driven cell migration and the forces that propel cell motility. However, fewer studies focused on estimating the effective forces generated by migrating cells. Since cells in vivo are exposed to complex physical environments with various barriers, understanding the forces generated by cells will provide insights into how cells manage to navigate challenging environments. In this work, we use theoretical models to discuss actin-driven and water-driven cell migration and the effect of cell shapes on force generation. The results show that the effective force generated by actin-driven cell migration is proportional to the rate of actin polymerization and the strength of focal adhesion; the energy source comes from the actin polymerization against the actin network pressure. The effective force generated by water-driven cell migration is proportional to the rate of active solute flux and the coefficient of external hydraulic resistance; the energy sources come from active solute pumping against the solute concentration gradient. The model further predicts that the actin network distribution is mechanosensitive and the presence of globular actin helps to establish a biphasic cell velocity in the strength of focal adhesion. The cell velocity and effective force generation also depend on the cell shape through the intracellular actin flow field.

3.
Phys Rev E ; 104(3-1): 034607, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34654198

RESUMO

We study the shear flow of active filaments confined in a thin channel for extensile and contractile fibers. We apply the Ericksen-Leslie equations of liquid crystal flow with an activity source term. The dimensionless form of this system includes the Ericksen, activity, and Reynolds numbers, together with the aspect ratio of the channel, as the main driving parameters. We perform a normal mode stability analysis of the base shear flow. For both types of fibers, we arrive at a comprehensive description of the stability properties and their dependence on the parameters of the system. The transition to unstable frequencies in extensile fibers occurs at a positive threshold value of the activity parameter, whereas for contractile ones a complex behavior is found at low absolute value of the activity number. The latter might be an indication of the biologically relevant plasticity and phase transition issues. In contrast with extensile fibers, flows of contractile ones are also found to be highly sensitive to the Reynolds number. The work on extensile fibers is guided by experiments on active filaments in confined channels and aims at quantifying their findings in the prechaotic regime.

4.
Chaos ; 30(11): 113105, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33261333

RESUMO

In this article, we study shear flow of active extensile filaments confined in a narrow channel. They behave as nematic liquid crystals that we assumed are governed by the Ericksen-Leslie equations of balance of linear and angular momentum. The addition of an activity source term in the Leslie stress captures the role of the biofuel prompting the dynamics. The dimensionless form of the governing system includes the Ericksen, activity, and Reynolds numbers together with the aspect ratio of the channel as the main driving parameters affecting the stability of the system. The active system that guides our analysis is composed of microtubules concentrated in bundles, hundreds of microns long, placed in a narrow channel domain, of aspect ratios in the range between 10-2 and 10-3 dimensionless units, which are able to align due to the combination of adenosine triphosphate-supplied energy and confinement effects. Specifically, this work aims at studying the role of confinement on the behavior of active matter. It is experimentally observed that, at an appropriately low activity and channel width, the active flow is laminar, with the linear velocity profile and the angle of alignment analogous to those in passive shear, developing defects and becoming chaotic, at a large activity and a channel aspect ratio. The present work addresses the laminar regime, where defect formation does not play a role. We perform a normal mode stability analysis of the base shear flow. A comprehensive description of the stability properties is obtained in terms of the driving parameters of the system. Our main finding, in addition to the geometry and magnitude of the flow profiles, and also consistent with the experimental observations, is that the transition to instability of the uniformly aligned shear flow occurs at a threshold value of the activity parameter, with the transition also being affected by the channel aspect ratio. The role of the parameters on the vorticity and angular profiles of the perturbing flow is also analyzed and found to agree with the experimentally observed transition to turbulent regimes. A spectral method based on Chebyshev polynomials is used to solve the generalized eigenvalue problems arising in the stability analysis.


Assuntos
Cristais Líquidos , Movimento (Física)
5.
Proc Natl Acad Sci U S A ; 116(48): 23894-23900, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31719206

RESUMO

In this work, we explore fundamental energy requirements during mammalian cell movement. Starting with the conservation of mass and momentum for the cell cytosol and the actin-network phase, we develop useful identities that compute dissipated energies during extensions of the cell boundary. We analyze 2 complementary mechanisms of cell movement: actin-driven and water-driven. The former mechanism occurs on 2-dimensional cell-culture substrate without appreciable external hydraulic resistance, while the latter mechanism is prominent in confined channels where external hydraulic resistance is high. By considering various forms of energy input and dissipation, we find that the water-driven cell-migration mechanism is inefficient and requires more energy. However, in environments with sufficiently high hydraulic resistance, the efficiency of actin-polymerization-driven cell migration decreases considerably, and the water-based mechanism becomes more efficient. Hence, the most efficient way for cells to move depends on the physical environment. This work can be extended to higher dimensions and has implication for understanding energetics of morphogenesis in early embryonic development and cancer-cell metastasis and provides a physical basis for understanding changing metabolic requirements for cell movement in different conditions.


Assuntos
Movimento Celular , Actinas/metabolismo , Actinas/fisiologia , Permeabilidade da Membrana Celular , Forma Celular , Metabolismo Energético , Modelos Biológicos , Polimerização , Água/metabolismo
6.
SIAM J Appl Math ; 69(5): 1277-1308, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-26412904

RESUMO

Passive microrheology [12] utilizes measurements of noisy, entropic fluctuations (i.e., diffusive properties) of micron-scale spheres in soft matter to infer bulk frequency-dependent loss and storage moduli. Here, we are concerned exclusively with diffusion of Brownian particles in viscoelastic media, for which the Mason-Weitz theoretical-experimental protocol is ideal, and the more challenging inference of bulk viscoelastic moduli is decoupled. The diffusive theory begins with a generalized Langevin equation (GLE) with a memory drag law specified by a kernel [7, 16, 22, 23]. We start with a discrete formulation of the GLE as an autoregressive stochastic process governing microbead paths measured by particle tracking. For the inverse problem (recovery of the memory kernel from experimental data) we apply time series analysis (maximum likelihood estimators via the Kalman filter) directly to bead position data, an alternative to formulas based on mean-squared displacement statistics in frequency space. For direct modeling, we present statistically exact GLE algorithms for individual particle paths as well as statistical correlations for displacement and velocity. Our time-domain methods rest upon a generalization of well-known results for a single-mode exponential kernel [1, 7, 22, 23] to an arbitrary M-mode exponential series, for which the GLE is transformed to a vector Ornstein-Uhlenbeck process.

7.
J Nonnewton Fluid Mech ; 154(2-3): 120-135, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20011614

RESUMO

The classical oscillatory shear wave model of Ferry et al. [J. Polym. Sci. 2:593-611, (1947)] is extended for active linear and nonlinear microrheology. In the Ferry protocol, oscillation and attenuation lengths of the shear wave measured from strobe photographs determine storage and loss moduli at each frequency of plate oscillation. The microliter volumes typical in biology require modifications of experimental method and theory. Microbead tracking replaces strobe photographs. Reflection from the top boundary yields counterpropagating modes which are modeled here for linear and nonlinear viscoelastic constitutive laws. Furthermore, bulk imposed strain is easily controlled, and we explore the onset of normal stress generation and shear thinning using nonlinear viscoelastic models. For this paper, we present the theory, exact linear and nonlinear solutions where possible, and simulation tools more generally. We then illustrate errors in inverse characterization by application of the Ferry formulas, due to both suppression of wave reflection and nonlinearity, even if there were no experimental error. This shear wave method presents an active and nonlinear analog of the two-point microrheology of Crocker et al. [Phys. Rev. Lett. 85: 888 - 891 (2000)]. Nonlocal (spatially extended) deformations and stresses are propagated through a small volume sample, on wavelengths long relative to bead size. The setup is ideal for exploration of nonlinear threshold behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...