Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000330

RESUMO

Drought stress is a major meteorological threat to crop growth and yield. Barley (Hordeum vulgare L.) is a vital cereal crop with strong drought tolerance worldwide. However, the underlying growth properties and metabolomic regulatory module of drought tolerance remains less known. Here, we investigated the plant height, spike length, effective tiller, biomass, average spikelets, 1000-grain weight, number of seeds per plant, grain weight per plant, ash content, protein content, starch content, cellulose content, and metabolomic regulation mechanisms of drought stress in barley. Our results revealed that the growth properties were different between ZDM5430 and IL-12 under drought stress at different growth stages. We found that a total of 12,235 metabolites were identified in two barley genotype root samples with drought treatment. More than 50% of these metabolites showed significant differences between the ZDM5430 and IL-12 roots. The Kyoto Encyclopedia of Genes and Genomes pathway analysis identified 368 differential metabolites mainly involved in starch and sucrose metabolism, the pentose phosphate pathway, pyrimidine metabolism, phenylalanine, tyrosine, and tryptophan biosynthesis in ZDM5430 under drought stress, whereas the different metabolites of IL-12 under drought stress related to starch and sucrose metabolism, the pentose phosphate pathway, 2-oxocarboxylic acid metabolism, cutin, suberine and wax biosynthesis, carbon metabolism, fatty acid biosynthesis, and C5-branched dibasic acid metabolism. These metabolites have application in the tricarboxylic cycle, the urea cycle, the met salvage pathway, amino acid metabolism, unsaturated fatty acid biosynthesis, phenolic metabolism, and glycolysis. On the other hand, the expression patterns of 13 genes related to the abovementioned bioprocesses in different barley genotypes roots were proposed. These findings afford an overview for the understanding of barley roots' metabolic changes in the drought defense mechanism by revealing the differently accumulated compounds.


Assuntos
Secas , Hordeum , Metabolômica , Hordeum/genética , Hordeum/metabolismo , Hordeum/crescimento & desenvolvimento , Hordeum/fisiologia , Metabolômica/métodos , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico , Metaboloma , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Amido/metabolismo , Resistência à Seca
2.
Physiol Plant ; 176(3): e14356, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38828569

RESUMO

Halophyte Halogeton glomeratus mostly grows in saline desert areas in arid and semi-arid regions and is able to adapt to adverse conditions such as salinity and drought. Earlier transcriptomic studies revealed activation of the HgS2 gene in the leaf of H. glomeratus seedlings when exposed to saline conditions. To identify the properties of HgS2 in H. glomeratus, we used yeast transformation and overexpression in Arabidopsis. Yeast cells genetically transformed with HgS2 exhibited K+ uptake and Na+ efflux compared with control (empty vector). Stable overexpression of HgS2 in Arabidopsis improved its resistance to salt stress and led to a notable rise in seed germination in salinity conditions compared to the wild type (WT). Transgenic Arabidopsis regulated ion homeostasis in plant cells by increasing Na+ absorption and decreasing K+ efflux in leaves, while reducing Na+ absorption and K+ efflux in roots. In addition, overexpression of HgS2 altered transcription levels of stress response genes and regulated different metabolic pathways in roots and leaves of Arabidopsis. These results offer new insights into the role of HgS2 in plants' salt tolerance.


Assuntos
Amaranthaceae , Arabidopsis , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Tolerância ao Sal , Amaranthaceae/genética , Amaranthaceae/fisiologia , Arabidopsis/genética , Arabidopsis/fisiologia , Germinação/genética , Germinação/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Raízes de Plantas/metabolismo , Potássio/metabolismo , Tolerância ao Sal/genética , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/fisiologia , Plantas Tolerantes a Sal/metabolismo , Sódio/metabolismo , Cloreto de Sódio/farmacologia
3.
Molecules ; 29(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38542857

RESUMO

To produce functional protective textiles with minimal environmental footprints, we developed durable superhydrophobic antimicrobial textiles. These textiles are characterized by a micro-pleated structure on polyester fiber surfaces, achieved through a novel plasma impregnation crosslinking process. This process involved the use of water as the dispersion medium, water-soluble nanosilver monomers for antimicrobial efficacy, fluorine-free polydimethylsiloxane (PDMS) for hydrophobicity, and polyester (PET) fabric as the base material. The altered surface properties of these fabrics were extensively analyzed using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectrometry (XPS), thermogravimetric analysis (TGA), and water contact angle (WCA) measurements. The antimicrobial performance of the strains was evaluated using Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. After treatment, the fabrics exhibited enhanced hydrophobic and antimicrobial properties, which was attributed to the presence of a micro-pleated structure and nanosilver. The modified textiles demonstrated a static WCA of approximately 154° and an impressive 99.99% inhibition rate against both test microbes. Notably, the WCA remained above 140° even after 500 washing cycles or 3000 friction cycles.


Assuntos
Anti-Infecciosos , Poliésteres , Prata , Poliésteres/química , Têxteis , Anti-Infecciosos/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Água/química
4.
Int J Mol Sci ; 24(19)2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37834288

RESUMO

Low phosphorus (LP) stress leads to a significant reduction in wheat yield, primarily in the reduction of biomass, the number of tillers and spike grains, the delay in heading and flowering, and the inhibition of starch synthesis and grouting. However, the differences in regulatory pathway responses to low phosphorus stress among different wheat genotypes are still largely unknown. In this study, metabolome and transcriptome analyses of G28 (LP-tolerant) and L143 (LP-sensitive) wheat varieties after 72 h of normal phosphorus (CK) and LP stress were performed. A total of 181 and 163 differentially accumulated metabolites (DAMs) were detected for G28CK vs. G28LP and L143CK vs. L143LP, respectively. Notably, the expression of pilocarpine (C07474) in G28CK vs. G28LP was significantly downregulated 4.77-fold, while the expression of neochlorogenic acid (C17147) in L143CK vs. L143LP was significantly upregulated 2.34-fold. A total of 4023 differentially expressed genes (DEGs) were acquired between G28 and L143, of which 1120 DEGs were considered as the core DEGs of LP tolerance of wheat after LP treatment. The integration of metabolomics and transcriptomic data further revealed that the LP tolerance of wheat was closely related to 15 metabolites and 18 key genes in the sugar and amino acid metabolism pathway. The oxidative phosphorylation pathway was enriched to four ATPases, two cytochrome c reductase genes, and fumaric acid under LP treatment. Moreover, PHT1;1, TFs (ARFA, WRKY40, MYB4, MYB85), and IAA20 genes were related to the Pi starvation stress of wheat roots. Therefore, the differences in LP tolerance of different wheat varieties were related to energy metabolism, amino acid metabolism, phytohormones, and PHT proteins, and precisely regulated by the levels of various molecular pathways to adapt to Pi starvation stress. Taken together, this study may help to reveal the complex regulatory process of wheat adaptation to Pi starvation and provide new genetic clues for further study on improving plant Pi utilization efficiency.


Assuntos
Plântula , Transcriptoma , Plântula/genética , Plântula/metabolismo , Triticum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica , Metaboloma/genética , Fósforo/metabolismo , Aminoácidos/metabolismo , Regulação da Expressão Gênica de Plantas
5.
Int J Biol Macromol ; 250: 126305, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37573905

RESUMO

Chitosan/TiO2 functionalized polypropylene (CS/TiO2/PP) nonwoven fabrics were fabricated through crosslinking of chitosan with glutaraldehyde followed by loading of TiO2 nanoparticles. The functionalized CS/TiO2/PP has super hydrophilicity and excellent visible light induced photocatalytic antibacterial properties owing to the synergistic effects of CS and TiO2. The photocatalytic degradation performance was determined by assessing the degradation of methyl blue under simulated visible light irradiation and its recyclability was also evaluated. In addition, SEM images demonstrated that TiO2 nanoparticles were distributed evenly on the surface of the 2 g/L CS/TiO2/PP. Meanwhile, the polypropylene surface showed a significant increase in hydrophilicity after being treated with chitosan and TiO2. The photocatalytic degradation results revealed that CS/TiO2/PP had higher photocatalytic properties than those of pure PP under visible light, and the degradation rate of methylene blue reached 96.4 % after 90 min of light exposure. Compared to pure PP, the antibacterial properties of CS/TiO2/PP significantly increased, and the bacterial reduction percentages were increased to 98.7 % and 96.3 %, against E. coli and S. aureus, respectively. The functionalized CS/TiO2/PP composites exhibited promising potential in environmentally friendly antibacterial materials.

6.
Cells ; 12(10)2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37408231

RESUMO

Melatonin (N-acetyl-5-methoxytryptamine) plays an important role in plant growth and development, and in the response to various abiotic stresses. However, its role in the responses of barley to low phosphorus (LP) stress remains largely unknown. In the present study, we investigated the root phenotypes and metabolic patterns of LP-tolerant (GN121) and LP-sensitive (GN42) barley genotypes under normal P, LP, and LP with exogenous melatonin (30 µM) conditions. We found that melatonin improved barley tolerance to LP mainly by increasing root length. Untargeted metabolomic analysis showed that metabolites such as carboxylic acids and derivatives, fatty acyls, organooxygen compounds, benzene and substituted derivatives were involved in the LP stress response of barley roots, while melatonin mainly regulated indoles and derivatives, organooxygen compounds, and glycerophospholipids to alleviate LP stress. Interestingly, exogenous melatonin showed different metabolic patterns in different genotypes of barley in response to LP stress. In GN42, exogenous melatonin mainly promotes hormone-mediated root growth and increases antioxidant capacity to cope with LP damage, while in GN121, it mainly promotes the P remobilization to supplement phosphate in roots. Our study revealed the protective mechanisms of exogenous MT in alleviating LP stress of different genotypes of barley, which can be used in the production of phosphorus-deficient crops.


Assuntos
Hordeum , Melatonina , Fósforo , Raízes de Plantas , Estresse Fisiológico , Melatonina/farmacologia , Melatonina/fisiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Fósforo/deficiência , Hordeum/efeitos dos fármacos , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Hordeum/metabolismo , Genótipo , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia
7.
Int J Mol Sci ; 24(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36902137

RESUMO

Nitrogen is one of the most important mineral elements for plant growth and development. Excessive nitrogen application not only pollutes the environment, but also reduces the quality of crops. However, are few studies on the mechanism of barley tolerance to low nitrogen at both the transcriptome and metabolomics levels. In this study, the nitrogen-efficient genotype (W26) and the nitrogen-sensitive genotype (W20) of barley were treated with low nitrogen (LN) for 3 days and 18 days, then treated with resupplied nitrogen (RN) from 18 to 21 days. Later, the biomass and the nitrogen content were measured, and RNA-seq and metabolites were analyzed. The nitrogen use efficiency (NUE) of W26 and W20 treated with LN for 21 days was estimated by nitrogen content and dry weight, and the values were 87.54% and 61.74%, respectively. It turned out to have a significant difference in the two genotypes under the LN condition. According to the transcriptome analysis, 7926 differentially expressed genes (DEGs) and 7537 DEGs were identified in the leaves of W26 and W20, respectively, and 6579 DEGs and 7128 DEGs were found in the roots of W26 and W20, respectively. After analysis of the metabolites, 458 differentially expressed metabolites (DAMs) and 425 DAMs were found in the leaves of W26 and W20, respectively, and 486 DAMs and 368 DAMs were found in the roots of W26 and W20, respectively. According to the KEGG joint analysis of DEGs and DAMs, it was discovered that glutathione (GSH) metabolism was the pathway of significant enrichment in the leaves of both W26 and W20. In this study, the metabolic pathways of nitrogen metabolism and GSH metabolism of barley under nitrogen were constructed based on the related DAMs and DEGs. In leaves, GSH, amino acids, and amides were the main identified DAMs, while in roots, GSH, amino acids, and phenylpropanes were mainly found DAMs. Finally, some nitrogen-efficient candidate genes and metabolites were selected based on the results of this study. The responses of W26 and W20 to low nitrogen stress were significantly different at the transcriptional and metabolic levels. The candidate genes that have been screened will be verified in future. These data not only provide new insights into how barley responds to LN, but also provide new directions for studying the molecular mechanisms of barley under abiotic stress.


Assuntos
Hordeum , Transcriptoma , Hordeum/genética , Nitrogênio/metabolismo , Metaboloma/genética , Perfilação da Expressão Gênica/métodos , Genótipo , Aminoácidos/metabolismo , Regulação da Expressão Gênica de Plantas
8.
Materials (Basel) ; 16(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36902900

RESUMO

Polylactide (PLA) nanofiber membranes with enhanced hydrophilic properties were prepared through electrospinning. As a result of their poor hydrophilic properties, common PLA nanofibers have poor hygroscopicity and separation efficiency when used as oil-water separation materials. In this research, cellulose diacetate (CDA) was used to improve the hydrophilic properties of PLA. The PLA/CDA blends were successfully electrospun to obtain nanofiber membranes with excellent hydrophilic properties and biodegradability. The effects of the additional amount of CDA on the surface morphology, crystalline structure, and hydrophilic properties of the PLA nanofiber membranes were investigated. The water flux of the PLA nanofiber membranes modified with different CDA amounts was also analyzed. The addition of CDA improved the hygroscopicity of the blended PLA membranes; the water contact angle of the PLA/CDA (6/4) fiber membrane was 97.8°, whereas that of the pure PLA fiber membrane was 134.9°. The addition of CDA enhanced hydrophilicity because it tended to decrease the diameter of PLA fibers and thus increased the specific surface area of the membranes. Blending PLA with CDA had no significant effect on the crystalline structure of the PLA fiber membranes. However, the tensile properties of the PLA/CDA nanofiber membranes worsened due to the poor compatibility between PLA and CDA. Interestingly, CDA endowed the nanofiber membranes with improved water flux. The water flux of the PLA/CDA (8/2) nanofiber membrane was 28,540.81 L/m2·h, which was considerably higher than that of the pure PLA fiber membrane (387.47 L/m2·h). The PLA/CDA nanofiber membranes can be feasibly applied as an environmentally friendly oil-water separation material because of their improved hydrophilic properties and excellent biodegradability.

9.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36361814

RESUMO

Cuticular waxes comprise the hydrophobic layer that protects crops against nonstomatal water loss and biotic and abiotic stresses. Expanding on our current knowledge of the genes that are involved in cuticular wax biosynthesis and regulation plays an important role in dissecting the processes of cuticular wax metabolism. In this study, we identified the Cer-GN1 barley (Hordeum vulgare L.) mutant that is generated by ethyl methanesulfonate mutagenesis with a glossy spike phenotype that is controlled by a single recessive nuclear gene. A physiological analysis showed that the total cuticular wax loads of Cer-GN1 were one-third that of the progenitor wild-type (WT), and its water loss rate was significantly accelerated (p < 0.05). In addition, Cer-GN1 was defective in the glume's cuticle according to the toluidine blue dye test, and it was deficient in the tubule-shaped crystals which were observed on the glume surfaces by scanning electron microscopy. Using metabolomics and transcriptomics, we investigated the impacts of cuticular wax composition and waxy regulatory genes on the loss of the glaucous wax in the spikes of Cer-GN1. Among the differential metabolites, we found that 16-hydroxyhexadecanoic acid, which is one of the predominant C16 and C18 fatty acid-derived cutin monomers, was significantly downregulated in Cer-GN1 when it was compared to that of WT. We identified two novel genes that are located on chromosome 4H and are downregulated in Cer-GN1 (HvMSTRG.29184 and HvMSTRG.29185) that encode long-chain fatty acid omega-monooxygenase CYP704B1, which regulates the conversion of C16 palmitic acid to 16-hydroxyhexadecanoic acid. A quantitative real-time PCR revealed that the expression levels of HvMSTRG.29184 and HvMSTRG.29185 were downregulated at 1, 4, 8, 12, and 16 days after the heading stage in Cer-GN1 when it was compared to those of WT. These results suggested that HvMSTRG.29184 and HvMSTRG.29185 have CYP704B1 activity, which could regulate the conversion of C16 palmitic acid to 16-hydroxyhexadecanoic acid in barley. Their downregulation in Cer-GN1 reduced the synthesis of the cuticular wax components and ultimately caused the loss of the glaucous wax in the spikes. It is necessary to verify whether HvMSTRG.29184 and HvMSTRG.29185 truly encode a CYP704B1 that regulates the conversion of C16 palmitic acid to 16-hydroxyhexadecanoic acid in barley.


Assuntos
Hordeum , Hordeum/genética , Hordeum/metabolismo , Ácido Palmítico/metabolismo , Folhas de Planta/metabolismo , Ceras/metabolismo , Água/metabolismo , Regulação da Expressão Gênica de Plantas
10.
Bioresour Technol ; 364: 128092, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36229007

RESUMO

An efficient strategy for short-chain fatty acid (SCFA) production from sludge anaerobic fermentation was proposed with the combination of yeast and alkyl polyglucose (APG). It revealed that the synergetic effect of yeast and APG could boost the SCFA concentration to the maximum value of 2800.34 mg COD/L within 9 days at 0.20 g/g suspended solids (SS) yeast and 0.20 g/g SS APG, which was significantly higher than that of its counterparts. Interestingly, the sludge solubilization, the biodegradability of fermentation substrate, as well as the acidification of hydrolyzed products, was evidently improved in the coexistence of APG and yeast. The activities of hydrolytic enzymes and acetate kinase were also stimulated, whereas the coenzyme F420 was inhibited. The synergetic effect of yeast and APG used in this work enriches the study of carbon resource recovery from sludge anaerobic fermentation.

11.
J Proteomics ; 269: 104703, 2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36084920

RESUMO

Halogeton glomeratus (H. glomeratus) is categorized as a halophyte, it can potentially endure not only salt but also heavy metals. The aim of this work was to study the molecular mechanisms underlying the Cd2+ tolerance of halophyte H. glomeratus seedlings. For that we used a combination of physiological characteristics and data-independent acquisition-based proteomic approaches. The results revealed that the significant changes of physiological characteristics of H. glomeratus occurred under approximately 0.4 mM Cd2+ condition and that Cd2+ accumulated in Cd2+-treated seedling roots, stems and leaves. At the early stage of Cd2+ stress, numerous differentially abundant proteins related to "phosphoenolpyruvate carboxylase", "transmembrane transporters", and "vacuolar protein sorting-associated protein" took important roles in the response of H. glomeratus to Cd2+ stress. At the later stage of Cd2+ stress, some differentially abundant proteins involved in "alcohol-forming fatty acyl-CoA reductase", "glutathione transferase", and "abscisic acid receptor" were considered to regulate the adaptation of H. glomeratus exposed to Cd2+ stress. Finally, we found various detoxification-related differentially abundant proteins related to Cd2+ stress. These biological processes and regulators synergistically regulated the Cd2+ tolerance of H. glomeratus. SIGNIFICANCE: The halophyte, H.glomeratus, has a strong tolerance to salinity, also survives in the heavy metal stress. At present, there are few reports on the comprehensive characterization and identification of Cd2+ response and adaption related regulators in H.glomeratus. This research focuses on the molecular mechanisms of H. glomeratus tolerance to Cd2+ stress at proteome levels to uncover the novel insight of the Cd2+-related biological processes and potential candidates involved in the response and adaption mechanism. The results will help elucidate the genetic basis of this species' tolerance to Cd2+ stress and develop application prospect of wild genetic resources to heavy metal phytoremediation.


Assuntos
Chenopodiaceae , Plantas Tolerantes a Sal , Ácido Abscísico , Cádmio/toxicidade , Chenopodiaceae/genética , Glutationa/metabolismo , Fosfoenolpiruvato/metabolismo , Folhas de Planta/metabolismo , Proteoma/metabolismo , Proteômica , Plântula/metabolismo , Transferases/metabolismo
12.
Front Plant Sci ; 13: 917652, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061799

RESUMO

Phosphate (Pi) stress is an important environmental factor that limits plant growth and development. Of various posttranslational modifications (PTMs), protein phosphorylation and succinylation are the two most important PTMs that regulate multiple biological processes in response to Pi stress. However, these PTMs have been investigated individually but their interactions with proteins in response to Pi stress remain poorly understood. In this study, to elucidate the underlying mechanisms of protein phosphorylation and succinylation in response to Pi stress, we performed a global analysis of the barley root phosphorylome and succinylome in Pi starvation and recovery stages, respectively. A total of 3,634 and 884 unique phosphorylated and succinylated proteins, respectively, corresponding to 11,538 and 2,840 phospho- and succinyl-sites, were identified; of these, 275 proteins were found to be simultaneously phosphorylated and succinylated. Gene Set Enrichment Analysis was performed with a Kyoto Encyclopedia of Genes and Genomes pathway database revealing pathways that significantly enriched in the phosphorylome and succinylome. Such pathways, were dynamically regulated by Pi starvation and recovery treatments, and could be partitioned into distinct metabolic processes. In particular, phosphorylated proteins related to purine, the mitogen-activated protein kinase (MAPK) signaling pathway, pyrimidine, and ATP-binding cassette (ABC) transporters were upregulated in both Pi deprivation and recovery stages. Succinylated proteins, significantly upregulated by both Pi starvation and recovery, were enriched in nitrogen metabolism and phenylpropanoid biosynthesis. Meanwhile, succinylated proteins that were significantly downregulated by both Pi starvation and recovery were enriched in lysine degradation and tryptophan metabolism. This highlighted the importance of these metabolic pathways in regulating Pi homeostasis. Furthermore, protein-protein interaction network analyses showed that the response of central metabolic pathways to Pi starvation and recovery was significantly modulated by phosphorylation or succinylation, both individually and together. In addition, we discovered relevant proteins involved in MAPK signaling and phenylpropanoid biosynthetic pathways existing in interactions between phosphorylated and succinylated proteins in response to Pi recovery. The current study not only provides a comprehensive analysis of phosphorylated and succinylated proteins in plant responses to Pi starvation and recovery, but also reveals detailed interactions between phosphorylated and succinylated proteins in barley roots.

13.
Int J Mol Sci ; 23(18)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36142428

RESUMO

Salt stress is a major abiotic stress factor affecting crop production, and understanding of the response mechanisms of seed germination to salt stress can help to improve crop tolerance and yield. The differences in regulatory pathways during germination in different salt-tolerant barley seeds are not clear. Therefore, this study investigated the responses of different salt-tolerant barley seeds during germination to salt stress at the proteomic and metabolic levels. To do so, the proteomics and metabolomics of two barley seeds with different salt tolerances were comprehensively examined. Through comparative proteomic analysis, 778 differentially expressed proteins were identified, of which 335 were upregulated and 443 were downregulated. These proteins, were mainly involved in signal transduction, propanoate metabolism, phenylpropanoid biosynthesis, plant hormones and cell wall stress. In addition, a total of 187 salt-regulated metabolites were identified in this research, which were mainly related to ABC transporters, amino acid metabolism, carbohydrate metabolism and lipid metabolism; 72 were increased and 112 were decreased. Compared with salt-sensitive materials, salt-tolerant materials responded more positively to salt stress at the protein and metabolic levels. Taken together, these results suggest that salt-tolerant germplasm may enhance resilience by repairing intracellular structures, promoting lipid metabolism and increasing osmotic metabolites. These data not only provide new ideas for how seeds respond to salt stress but also provide new directions for studying the molecular mechanisms and the metabolic homeostasis of seeds in the early stages of germination under abiotic stresses.


Assuntos
Germinação , Hordeum , Sistemas de Transporte de Aminoácidos/metabolismo , Hordeum/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Propionatos/metabolismo , Proteômica/métodos , Estresse Salino , Sementes/metabolismo , Estresse Fisiológico
14.
Nanomaterials (Basel) ; 12(14)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35889656

RESUMO

Microbiological protection textile materials played an important role in the battle against the epidemic. However, the traditional active antimicrobial treatment of textiles suffers from narrow textile applicability, low chemical stability, and poor washability. Here, a high-strength adhesive nanosilver glue was synthesized by introducing nontoxic water-soluble polyurethane glue as a protectant. The as-prepared nanosilver glue could adhere firmly to the fiber surfaces by forming a flexible polymer film and could encapsulate nanosilver inside the glue. The as-prepared nanosilver had a torispherical structure with diameter of ~22 nm, zeta potential of -42.7 mV, and good dispersibility in water, and it could be stored for one year. Further studies indicated that the nanosilver glue had wide applicability to the main fabric species, such as cotton and polyester fabric, surgical mask, latex paint, and wood paint. The antimicrobial cotton and polyester fabrics were prepared by a simple impregnation-padding-baking process. The corresponding antimicrobial activity was positively correlated with nanosilver content. The treated fabrics (500 mg/kg) exhibited ultrahigh washing resistance (maintained over 99% antibacterial rates for 100 times of standard washing) and wear resistance (99% antibacterial rates for 8000 times of standard wearing), equivalent breathability to untreated fabric, improved mechanical properties, and good flexibility, demonstrating a potential in cleanable and reusable microbiological protection textiles.

15.
Nanomaterials (Basel) ; 12(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35683667

RESUMO

Nanofiber membrane has high biological protection function because of its good waterproof and moisture permeability properties. However, this membrane usually lacks active antimicrobial properties, limiting the application in reusable bioprotective textiles. Herein, waterborne polyurethane-capped Ag nanoparticles (AgNPs) were synthesized by reducing silver nitrate in water by sodium borohydride in the presence of polyurethane. AgNP-embedded thermoplastic urethane (TPU) nanofiber membrane was prepared by electrospinning a mixed solution of AgNPs and TPU. As-prepared membranes with Ag content of 50-300 mg·kg-1 have an average diameter of 0.75, 0.64, and 0.63 µm and good fiber uniformity. The doping of AgNP-embedded nanomembrane showed increased breaking force probably because of the induced crystallization effect. Test results showed that as-prepared TPU nanofiber membrane with silver content as low as 100 mg·kg-1 showed good washing resistance. The antibacterial rates of E. coli and S. aureus remained 99.99% with 50 times of soaping or chlorine washing. The corresponding waterproof and moisture permeability properties of nanofiber membrane with a thickness of 0.1 mm remained nearly unchanged, i.e., moisture permeability of around 2600 g·m-2 per 24 h and the hydrostatic pressure resistance of around 400 Pa after 50 times of soaping or chlorine washing.

16.
BMJ Open ; 12(3): e054177, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35296479

RESUMO

OBJECTIVES: Frailty has been extensively studied in the general population. However, there is little information on frailty among patients undergoing haemodialysis (HD) in China. This study analysed the prevalence and associated factors of frailty among Southern Chinese Han patients on HD. DESIGN: Observational cross-sectional study. SETTING: Three HD centres in Southern China. PARTICIPANTS: Three hundred patients who underwent regular HD between June 2019 and October 2019. MAIN OUTCOMES AND MEASURES: Frailty was assessed using the Tilburg indicator of frailty (TFI) questionnaire, and the psychological status of the respondents was evaluated by the Self-Rating Depression Scale (SDS) and the Self-Rating Anxiety Scale (SAS). RESULTS: Seventy-five per cent of participants were in the frailty group, and the TFI score of HD patients was 6.89±2.87, with 8.15±2.06 in the frailty group and 2.87±1.31 in the non-frailty group. Frailty patients had higher SDS and SAS scores, and were more likely to suffer depression and anxiety than non-frailty patients. Multivariate logistic regression analysis excluding depression and anxiety showed that age, Charlson Comorbidity Index (excluding end-stage renal disease), a nuclear family (compared with living alone), and albumin were independently associated with frailty (all p<0.05). In the model including depression and anxiety, age, diabetes mellitus, living as a couple (compared with living alone), a nuclear family (compared with living alone), an extended family (compared with living alone), low phosphorus, depression and anxiety were associated with frailty by multivariate logistic regression analysis (all p<0.05). CONCLUSIONS: Approximately three-quarters of patients with HD in Southern China are frail, often accompanied with depression and anxiety. Age, diabetes mellitus, family structure, phosphorus, depression and anxiety were associated with frailty.


Assuntos
Fragilidade , Idoso , Estudos Transversais , Idoso Fragilizado , Fragilidade/epidemiologia , Fragilidade/psicologia , Avaliação Geriátrica , Humanos , Prevalência , Diálise Renal/psicologia
17.
Materials (Basel) ; 16(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36614386

RESUMO

The superhydrophobic surface can be prepared by two methods; one is by reducing the surface energy, and the other is by constructing a micro-nano rough structure. To achieve high superhydrophobic performance in terms of durability, the firm combination of hydrophobic coating and substrate is particularly important. Here, we use polydimethylsiloxane (PDMS) as a low surface energy monomer, water-borne polyurethane (WPU) as a dispersing aid, and use high-power ultrasound to disperse PDMS in water to make emulsion. The polyester matrix is etched by atmospheric plasma, dipped in PDMS emulsion, dried, and finally baked to induce PDMS on the surface of polyester fiber to cross-link into film. A series of tests on the self-cleaning polyester fabric prepared by this method show that when the concentration of PDMS is 8 g/L and the mass ratio of PDMS to WPU is 20:1, the water contact angle (WCA) reaches the maximum value of 148.2°, which decreases to 141.5° after 200 times of washing and 138.6° after 5000 times of rubbing. Before and after PDMS coating, the tensile strength of polyester fabric increases from 489.4 N to 536.4 N, and the water vapor transmission decreases from 13,535.7 g/(m2·d) to 12,224.3 g/(m2·d). This research is helpful to the large-scale production of self-cleaning polyester fabric. In the future, on the basis of this research, we will add functional powder to endow self-cleaning polyester fabric with higher hydrophobicity and other properties.

18.
Polymers (Basel) ; 15(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36616493

RESUMO

Cellulose diacetate (CDA) and L-lactide (L-LA) were used to prepare CDA-g-PLLA with a low glass transition temperature under different process conditions. Given the high glass transition temperature (Tg) of CDA, the thermal processing performance of CDA is poor, which greatly limits its application fields. To decrease the Tg of CDA, graft copolymerization was used in this research. A CDA-g-PLLA graft copolymer was synthesized by grafting CDA with L-LA under different reaction conditions using stannous octanoate as the catalyst and variations in the grafting rate under different reaction conditions were compared. The chemical structure and crystal structure of the CDA-g-PLLA were investigated, and thermal properties were also studied. The results showed that the grafting rate was the highest at the L-LA/CDA mass ratio of 4:1 under a reaction temperature of 150 °C for 90 min, and no poly-L-lactide (PLLA) homopolymer was found among the CDA-g-PLLA graft copolymers after purification. The Tg of CDA-g-PLLA was 54.2 °C, and the initial temperature of weightlessness of CDA-g-PLLA was 218.7 °C. The regularity of the original CDA molecular chains was destroyed after grafting PLLA molecular chains. In this research, we investigated the optimal grafting conditions for CDA-g-PLLA and the CDA-g-PLLA had a low Tg, which improves the thermal processing performance of CDA and broadens its application prospects in the industry.

19.
Front Plant Sci ; 12: 676432, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335649

RESUMO

Phosphorus (P) deficiency is a major threat to the crop production, and for understanding the response mechanism of plant roots, P stress may facilitate the development of crops with increased tolerance. Phosphorylation plays a critical role in the regulation of proteins for plant responses to biotic and abiotic stress; however, its functions in P starvation/resupply are largely unknown for barley (Hordeum vulgare) growth. Here, we performed a global review of phosphorylation in barley roots treated by P starvation/resupply. We identified 7,710 phosphorylation sites on 3,373 proteins, of which 76 types of conserved motifs were extracted from 10,428 phosphorylated peptides. Most phosphorylated proteins were located in the nucleus (36%) and chloroplast (32%). Compared with the control, 186 and 131 phosphorylated proteins under P starvation condition and 156 and 111 phosphorylated proteins under P resupply condition showed significant differences at 6 and 48 h, respectively. These proteins mainly participated in carbohydrate metabolism, phytohormones, signal transduction, cell wall stress, and oxidases stress. Moreover, the pathways of the ribosome, RNA binding, protein transport, and metal binding were significantly enriched under P starvation, and only two pathways of ribosome and RNA binding were greatly enriched under Pi resupply according to the protein-protein interaction analysis. The results suggested that the phosphorylation proteins might play important roles in the metabolic processes of barley roots in response to Pi deficiency/resupply. The data not only provide unique access to phosphorylation reprogramming of plant roots under deficiency/resupply but also demonstrate the close cooperation between these phosphorylation proteins and key metabolic functions.

20.
Front Plant Sci ; 12: 703255, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34290730

RESUMO

Halogeton glomeratus is a succulent annual herbaceous halophyte belonging to the Chenopodiaceae family, has attracted wide attention as a promising candidate for phytoremediation and as an oilseed crop and noodle-improver. More importantly, H. glomeratus has important medicinal value in traditional Chinese medicine. However, there are few comprehensive studies on the nutrients, particularly secondary metabolites. Here, we adopted untargeted metabolomics to compare the differences in metabolites of different tissues (root, stem, leaf, and seed) and identify the compounds related to pharmacological effects and response to abiotic stress in H. glomeratus. A total of 2,152 metabolites were identified, and the metabolic profiles of root, stem, leaf, and seed samples were clearly separated. More than 50% of the metabolites showed significant differences among root, stem, leaf, and seed. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of differential metabolites suggested an extensive alteration in the metabolome among the different organs. Furthermore, the identified metabolites related to pharmacological effects and response to abiotic stress included flavones, flavonols, flavandiols, glucosinolates, isoquinolines, pyridines, indoles, amino acids, lipids, carbohydrates, and ATP-binding cassette transporters. These metabolites have application in treating human cardiovascular diseases, cancers, diabetes, and heart disease, induce sleeping and have nutritive value. In plants, they are related to osmotic adjustment, alleviating cell damage, adjusting membrane lipid action and avoiding toxins. To the best of our knowledge, this is the first metabolomics-based report to overview the metabolite compounds in H. glomeratus and provide a reference for future development and utilization of H. glomeratus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...