Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 242(Pt 3): 125070, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37244338

RESUMO

H. virescens is a perennial herbaceous plant with highly tolerant to cold weather, but the key genes that respond to low temperature stress still remain unclear. Hence, RNA-seq was performed using leaves of H. virescens treated at 0 °C and 25 °C for 12 h, 36 h, and 60 h, respectively, and a total of 9416 DEGs were significantly enriched into seven KEGG pathways. The LC-QTRAP platform was performed using leaves of H. virescens leaves at 0 °C and 25 °C for 12 h, 36 h, and 60 h, respectively, and a total of 1075 metabolites were detected, which were divided into 10 categories. Additionally, 18 major metabolites, two key pathways, and six key genes were mined using a multi-omics analytical strategy. The RT-PCR results showed that with the extension of treatment time, the expression levels of key genes in the treatment group gradually increased, and the difference between the treatment group and the control group was extremely significant. Notably, the functional verification results showed that the key genes positively regulated cold tolerance of H. virescens. These results can lay a foundation for the in-depth analysis of the mechanism of response of perennial herbs to low temperature stress.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Temperatura , Poaceae , Metabolômica , Temperatura Baixa , Regulação da Expressão Gênica de Plantas
2.
BMC Genomics ; 23(1): 280, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35392804

RESUMO

BACKGROUND: Helictotrichon virescens is a perennial grass that is primarily distributed in high altitude areas of 2000 ~ 4500 m. It is widely cultivated in the Qinghai-Tibet Plateau of China, strongly resistant to cold, and an essential part of the wild herbs in this region. However, the molecular mechanism of the response of H. virescens to low temperature stress and the key regulatory genes for specific biological processes are poorly understood. RESULTS: Physiological and transcriptome analyses were used to study the cold stress response mechanism in H virescens. During the low temperature stress period, the content of chlorophyll a and b decreased more and more with the delay of the treatment time. Among them, the difference between the controls was not significant, and the difference between the control and the treatment was significant. At the same time, the expression of related differential genes was up-regulated during low temperature treatment. In addition, the plant circadian pathway is crucial for their response to cold stress. The expression of differentially expressed genes that encode LHY and HY5 were strongly up-regulated during cold stress. CONCLUSIONS: This study should help to fully understand how H. virescens responds to low temperatures. It answers pertinent questions in the response of perennial herbs to cold stress, i.e., how light and low temperature signals integrate to regulate plant circadian rhythms and Decrease of content of chlorophylls (which can be also accompanied with decrease of total quantity of reaction centers) leads to an increase in photosynthetic damage.


Assuntos
Regulação da Expressão Gênica de Plantas , Transcriptoma , Clorofila A , Temperatura Baixa , Resposta ao Choque Frio/genética , Perfilação da Expressão Gênica , Poaceae/genética , Estresse Fisiológico/genética , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...