Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 385(6708): eadk5901, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39088616

RESUMO

The proliferating cell nuclear antigen (PCNA) clamp encircles DNA to hold DNA polymerases (Pols) to DNA for processivity. The Ctf18-RFC PCNA loader, a replication factor C (RFC) variant, is specific to the leading-strand Pol (Polε). We reveal here the underlying mechanism of Ctf18-RFC specificity to Polε using cryo-electron microscopy and biochemical studies. We found that both Ctf18-RFC and Polε contain specific structural features that direct PCNA loading onto DNA. Unlike other clamp loaders, Ctf18-RFC has a disordered ATPase associated with a diverse cellular activities (AAA+) motor that requires Polε to bind and stabilize it for efficient PCNA loading. In addition, Ctf18-RFC can pry prebound Polε off of DNA, then load PCNA onto DNA and transfer the PCNA-DNA back to Polε. These elements in both Ctf18-RFC and Polε provide specificity in loading PCNA onto DNA for Polε.


Assuntos
Replicação do DNA , Antígeno Nuclear de Célula em Proliferação , Proteína de Replicação C , Humanos , ATPases Associadas a Diversas Atividades Celulares/metabolismo , ATPases Associadas a Diversas Atividades Celulares/química , Microscopia Crioeletrônica , DNA/química , DNA/metabolismo , DNA Polimerase II/metabolismo , DNA Polimerase II/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas Nucleares , Antígeno Nuclear de Célula em Proliferação/metabolismo , Antígeno Nuclear de Célula em Proliferação/química , Ligação Proteica , Proteína de Replicação C/metabolismo , Proteína de Replicação C/química , Domínios Proteicos
2.
Nat Struct Mol Biol ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871854

RESUMO

Humans have three different proliferating cell nuclear antigen (PCNA) clamp-loading complexes: RFC and CTF18-RFC load PCNA onto DNA, but ATAD5-RFC can only unload PCNA from DNA. The underlying structural basis of ATAD5-RFC unloading is unknown. We show here that ATAD5 has two unique locking loops that appear to tie the complex into a rigid structure, and together with a domain that plugs the DNA-binding chamber, prevent conformation changes required for DNA binding, likely explaining why ATAD5-RFC is exclusively a PCNA unloader. These features are conserved in the yeast PCNA unloader Elg1-RFC. We observe intermediates in which PCNA bound to ATAD5-RFC exists as a closed planar ring, a cracked spiral or a gapped spiral. Surprisingly, ATAD5-RFC can open a PCNA gap between PCNA protomers 2 and 3, different from the PCNA protomers 1 and 3 gap observed in all previously characterized clamp loaders.

3.
Sci Adv ; 10(9): eadl1739, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38427736

RESUMO

During DNA replication, the proliferating cell nuclear antigen (PCNA) clamps are loaded onto primed sites for each Okazaki fragment synthesis by the AAA+ heteropentamer replication factor C (RFC). PCNA encircling duplex DNA is quite stable and is removed from DNA by the dedicated clamp unloader Elg1-RFC. Here, we show the cryo-EM structure of Elg1-RFC in various states with PCNA. The structures reveal essential features of Elg1-RFC that explain how it is dedicated to PCNA unloading. Specifically, Elg1 contains two external loops that block opening of the Elg1-RFC complex for DNA binding, and an "Elg1 plug" domain that fills the central DNA binding chamber, thereby reinforcing the exclusive PCNA unloading activity of Elg1-RFC. Elg1-RFC was capable of unloading PCNA using non-hydrolyzable AMP-PNP. Both RFC and Elg1-RFC could remove PCNA from covalently closed circular DNA, indicating that PCNA unloading occurs by a mechanism that is distinct from PCNA loading. Implications for the PCNA unloading mechanism are discussed.


Assuntos
Proteínas de Ligação a DNA , Proteínas de Saccharomyces cerevisiae , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Antígeno Nuclear de Célula em Proliferação/química , Proteína de Replicação C/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Cell Rep ; 42(7): 112694, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37392384

RESUMO

Rad24-RFC (replication factor C) loads the 9-1-1 checkpoint clamp onto the recessed 5' ends by binding a 5' DNA at an external surface site and threading the 3' single-stranded DNA (ssDNA) into 9-1-1. We find here that Rad24-RFC loads 9-1-1 onto DNA gaps in preference to a recessed 5' end, thus presumably leaving 9-1-1 on duplex 3' ss/double-stranded DNA (dsDNA) after Rad24-RFC ejects from DNA. We captured five Rad24-RFC-9-1-1 loading intermediates using a 10-nt gap DNA. We also determined the structure of Rad24-RFC-9-1-1 using a 5-nt gap DNA. The structures reveal that Rad24-RFC is unable to melt DNA ends and that a Rad24 loop limits the dsDNA length in the chamber. These observations explain Rad24-RFC's preference for a preexisting gap of over 5-nt ssDNA and suggest a direct role of the 9-1-1 in gap repair with various TLS (trans-lesion synthesis) polymerases in addition to signaling the ATR kinase.


Assuntos
Proteínas de Ciclo Celular , Proteínas de Saccharomyces cerevisiae , Proteínas de Ciclo Celular/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Dano ao DNA , DNA/metabolismo , Replicação do DNA , Proteína de Replicação C/metabolismo , Biologia , Antígeno Nuclear de Célula em Proliferação/metabolismo
5.
bioRxiv ; 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37205533

RESUMO

Recent structural studies show the Rad24-RFC loads the 9-1-1 checkpoint clamp onto a recessed 5' end by binding the 5' DNA on Rad24 at an external surface site and threading the 3' ssDNA into the well-established internal chamber and into 9-1-1. We find here that Rad24-RFC loads 9-1-1 onto DNA gaps in preference to a recessed 5' DNA end, thus presumably leaving 9-1-1 on a 3' ss/ds DNA after Rad24-RFC ejects from the 5' gap end and may explain reports of 9-1-1 directly functioning in DNA repair with various TLS polymerases, in addition to signaling the ATR kinase. To gain a deeper understanding of 9-1-1 loading at gaps we report high-resolution structures of Rad24-RFC during loading of 9-1-1 onto 10-nt and 5-nt gapped DNAs. At a 10-nt gap we captured five Rad24-RFC-9-1-1 loading intermediates in which the 9-1-1 DNA entry gate varies from fully open to fully closed around DNA using ATPγS, supporting the emerging view that ATP hydrolysis is not needed for clamp opening/closing, but instead for dissociation of the loader from the clamp encircling DNA. The structure of Rad24-RFC-9-1-1 at a 5-nt gap shows a 180° axially rotated 3'-dsDNA which orients the template strand to bridge the 3'- and 5'- junctions with a minimum 5-nt ssDNA. The structures reveal a unique loop on Rad24 that limits the length of dsDNA in the inner chamber, and inability to melt DNA ends unlike RFC, thereby explaining Rad24-RFC's preference for a preexisting ssDNA gap and suggesting a direct role in gap repair in addition to its checkpoint role.

6.
Methods Enzymol ; 672: 173-202, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35934475

RESUMO

The replication machinery that synthesizes new copies of chromosomal DNA is located at the junction where double-stranded DNA is separated into its two strands. This replication fork DNA structure is at the heart of most assays involving DNA helicases. The helicase enzyme unwinds the replication fork structure into two single-stranded templates which are converted into two daughter duplexes by other proteins, including DNA polymerases. In eukaryotes, the CMG (Cdc45/Mcm2-7/GINS) helicase plays the pivotal role of unwinding the parental duplex DNA and at the same time interacts with numerous other proteins, including the leading strand polymerase, Pol ɛ. This chapter first describes how we design and prepare synthetic replication forks used in our CMG-related assays. Then we describe how to load CMG onto the fork. The Mcm2-7 motor subunits of CMG form a closed ring, as do all cellular replicative helicases, that encircles ssDNA for helicase function. Thus, the first step in these assays is the loading of CMG onto the fork DNA, followed by DNA unwinding and replication. We explain protocols for different strategies of preloading CMG onto the DNA fork using different ATP analogues. Additionally, the presence of Mcm10, an intimate partner of CMG, affects how CMG is preloaded onto a fork substrate.


Assuntos
Replicação do DNA , Proteínas de Manutenção de Minicromossomo , Proteínas de Ciclo Celular/metabolismo , DNA/química , DNA de Cadeia Simples , Proteínas de Manutenção de Minicromossomo/química , Proteínas de Manutenção de Minicromossomo/genética , Proteínas de Manutenção de Minicromossomo/metabolismo , Nucleotídeos
7.
Elife ; 112022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35829698

RESUMO

RFC uses ATP to assemble PCNA onto primed sites for replicative DNA polymerases δ and ε. The RFC pentamer forms a central chamber that binds 3' ss/ds DNA junctions to load PCNA onto DNA during replication. We show here five structures that identify a second DNA binding site in RFC that binds a 5' duplex. This 5' DNA site is located between the N-terminal BRCT domain and AAA+ module of the large Rfc1 subunit. Our structures reveal ideal binding to a 7-nt gap, which includes 2 bp unwound by the clamp loader. Biochemical studies show enhanced binding to 5 and 10 nt gaps, consistent with the structural results. Because both 3' and 5' ends are present at a ssDNA gap, we propose that the 5' site facilitates RFC's PCNA loading activity at a DNA damage-induced gap to recruit gap-filling polymerases. These findings are consistent with genetic studies showing that base excision repair of gaps greater than 1 base requires PCNA and involves the 5' DNA binding domain of Rfc1. We further observe that a 5' end facilitates PCNA loading at an RPA coated 30-nt gap, suggesting a potential role of the RFC 5'-DNA site in lagging strand DNA synthesis.


Assuntos
DNA , Proteínas de Saccharomyces cerevisiae , Microscopia Crioeletrônica , DNA/metabolismo , Reparo do DNA , Replicação do DNA , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ligação Proteica , Proteína de Replicação C/química , Proteína de Replicação C/genética , Proteína de Replicação C/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Nat Struct Mol Biol ; 29(4): 376-385, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35314830

RESUMO

The 9-1-1 DNA checkpoint clamp is loaded onto 5'-recessed DNA to activate the DNA damage checkpoint that arrests the cell cycle. The 9-1-1 clamp is a heterotrimeric ring that is loaded in Saccharomyces cerevisiae by Rad24-RFC (hRAD17-RFC), an alternate clamp loader in which Rad24 replaces Rfc1 in the RFC1-5 clamp loader of proliferating cell nuclear antigen (PCNA). The 9-1-1 clamp loading mechanism has been a mystery, because, unlike RFC, which loads PCNA onto a 3'-recessed junction, Rad24-RFC loads the 9-1-1 ring onto a 5'-recessed DNA junction. Here we report two cryo-EM structures of Rad24-RFC-DNA with a closed or 27-Å open 9-1-1 clamp. The structures reveal a completely unexpected mechanism by which a clamp can be loaded onto DNA. Unlike RFC, which encircles DNA, Rad24 binds 5'-DNA on its surface, not inside the loader, and threads the 3' ssDNA overhang into the 9-1-1 clamp from above the ring.


Assuntos
Proteínas de Ciclo Celular , Proteínas de Saccharomyces cerevisiae , Proteínas de Ciclo Celular/metabolismo , DNA/metabolismo , Replicação do DNA , Peptídeos e Proteínas de Sinalização Intracelular , Antígeno Nuclear de Célula em Proliferação/genética , Proteína de Replicação C/química , Proteína de Replicação C/genética , Proteína de Replicação C/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35042821

RESUMO

The adenosine triphosphate (ATP) analog ATPγS often greatly slows or prevents enzymatic ATP hydrolysis. The eukaryotic CMG (Cdc45, Mcm2 to 7, GINS) replicative helicase is presumed unable to hydrolyze ATPγS and thus unable to perform DNA unwinding, as documented for certain other helicases. Consequently, ATPγS is often used to "preload" CMG onto forked DNA substrates without unwinding before adding ATP to initiate helicase activity. We find here that CMG does hydrolyze ATPγS and couples it to DNA unwinding. Indeed, the rate of unwinding of a 20- and 30-mer duplex fork of different sequences by CMG is only reduced 1- to 1.5-fold using ATPγS compared with ATP. These findings imply that a conformational change is the rate-limiting step during CMG unwinding, not hydrolysis. Instead of using ATPγS for loading CMG onto DNA, we demonstrate here that nonhydrolyzable adenylyl-imidodiphosphate (AMP-PNP) can be used to preload CMG onto a forked DNA substrate without unwinding.


Assuntos
Trifosfato de Adenosina/análogos & derivados , DNA Helicases/metabolismo , Complexos Multiproteicos/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Proteínas de Ciclo Celular/metabolismo , DNA/química , DNA Helicases/genética , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Subcell Biochem ; 96: 233-258, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33252731

RESUMO

In all cell types, a multi-protein machinery is required to accurately duplicate the large duplex DNA genome. This central life process requires five core replisome factors in all cellular life forms studied thus far. Unexpectedly, three of the five core replisome factors have no common ancestor between bacteria and eukaryotes. Accordingly, the replisome machines of bacteria and eukaryotes have important distinctions in the way that they are organized and function. This chapter outlines the major replication proteins that perform DNA duplication at replication forks, with particular attention to differences and similarities in the strategies used by eukaryotes and bacteria.


Assuntos
Replicação do DNA , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Bactérias/enzimologia , Bactérias/genética , Eucariotos/enzimologia , Eucariotos/genética
11.
Biochem Soc Trans ; 48(6): 2769-2778, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33300972

RESUMO

The replication of DNA in chromosomes is initiated at sequences called origins at which two replisome machines are assembled at replication forks that move in opposite directions. Interestingly, in vivo studies observe that the two replication forks remain fastened together, often referred to as a replication factory. Replication factories containing two replisomes are well documented in cellular studies of bacteria (Escherichia coli and Bacillus subtilis) and the eukaryote, Saccharomyces cerevisiae. This basic twin replisome factory architecture may also be preserved in higher eukaryotes. Despite many years of documenting the existence of replication factories, the molecular details of how the two replisome machines are tethered together has been completely unknown in any organism. Recent structural studies shed new light on the architecture of a eukaryote replisome factory, which brings with it a new twist on how a replication factory may function.


Assuntos
Bacillus subtilis/metabolismo , Replicação do DNA , Escherichia coli/metabolismo , Origem de Replicação , Saccharomyces cerevisiae/metabolismo , Cromossomos/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/genética , Dimerização , Epigênese Genética , Nucleossomos/metabolismo , Multimerização Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Elife ; 82019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31589141

RESUMO

The current view is that eukaryotic replisomes are independent. Here we show that Ctf4 tightly dimerizes CMG helicase, with an extensive interface involving Psf2, Cdc45, and Sld5. Interestingly, Ctf4 binds only one Pol α-primase. Thus, Ctf4 may have evolved as a trimer to organize two helicases and one Pol α-primase into a replication factory. In the 2CMG-Ctf43-1Pol α-primase factory model, the two CMGs nearly face each other, placing the two lagging strands toward the center and two leading strands out the sides. The single Pol α-primase is centrally located and may prime both sister replisomes. The Ctf4-coupled-sister replisome model is consistent with cellular microscopy studies revealing two sister forks of an origin remain attached and are pushed forward from a protein platform. The replication factory model may facilitate parental nucleosome transfer during replication.


Assuntos
DNA Polimerase I/metabolismo , Replicação do DNA , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Ligação Proteica , Multimerização Proteica
13.
Elife ; 82019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31560343

RESUMO

The discovery of a biomolecular condensate involved in DNA replication has wide-ranging implications.


Assuntos
Proteínas de Ciclo Celular , Complexo de Reconhecimento de Origem/genética , DNA , Replicação do DNA
15.
Elife ; 62017 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-28869037

RESUMO

Replicative helicases in all cell types are hexameric rings that unwind DNA by steric exclusion in which the helicase encircles the tracking strand only and excludes the other strand from the ring. This mode of translocation allows helicases to bypass blocks on the strand that is excluded from the central channel. Unlike other replicative helicases, eukaryotic CMG helicase partially encircles duplex DNA at a forked junction and is stopped by a block on the non-tracking (lagging) strand. This report demonstrates that Mcm10, an essential replication protein unique to eukaryotes, binds CMG and greatly stimulates its helicase activity in vitro. Most significantly, Mcm10 enables CMG and the replisome to bypass blocks on the non-tracking DNA strand. We demonstrate that bypass occurs without displacement of the blocks and therefore Mcm10 must isomerize the CMG-DNA complex to achieve the bypass function.


Assuntos
DNA Helicases/metabolismo , Replicação do DNA , DNA Fúngico/metabolismo , Proteínas de Manutenção de Minicromossomo/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Complexos Multienzimáticos/metabolismo
16.
Curr Biol ; 27(5): R174-R176, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28267969

RESUMO

DNA sliding clamps are rings that tether certain enzymes to DNA. How clamp proteins slide on DNA has remained a mystery. A new crystal structure, together with molecular dynamics and NMR studies, has revealed how the human PCNA clamp slides on DNA.


Assuntos
Replicação do DNA , DNA , Humanos , Simulação de Dinâmica Molecular , Antígeno Nuclear de Célula em Proliferação/genética
17.
Crit Rev Biochem Mol Biol ; 51(3): 135-49, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27160337

RESUMO

The machines that decode and regulate genetic information require the translation, transcription and replication pathways essential to all living cells. Thus, it might be expected that all cells share the same basic machinery for these pathways that were inherited from the primordial ancestor cell from which they evolved. A clear example of this is found in the translation machinery that converts RNA sequence to protein. The translation process requires numerous structural and catalytic RNAs and proteins, the central factors of which are homologous in all three domains of life, bacteria, archaea and eukarya. Likewise, the central actor in transcription, RNA polymerase, shows homology among the catalytic subunits in bacteria, archaea and eukarya. In contrast, while some "gears" of the genome replication machinery are homologous in all domains of life, most components of the replication machine appear to be unrelated between bacteria and those of archaea and eukarya. This review will compare and contrast the central proteins of the "replisome" machines that duplicate DNA in bacteria, archaea and eukarya, with an eye to understanding the issues surrounding the evolution of the DNA replication apparatus.


Assuntos
Replicação do DNA , Evolução Molecular , Biossíntese de Proteínas , Transcrição Gênica , Animais , DNA/genética , Variação Genética , Humanos , Modelos Moleculares , Proteínas/genética , RNA/genética
18.
Elife ; 4: e04988, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25871847

RESUMO

We have reconstituted a eukaryotic leading/lagging strand replisome comprising 31 distinct polypeptides. This study identifies a process unprecedented in bacterial replisomes. While bacteria and phage simply recruit polymerases to the fork, we find that suppression mechanisms are used to position the distinct eukaryotic polymerases on their respective strands. Hence, Pol ε is active with CMG on the leading strand, but it is unable to function on the lagging strand, even when Pol δ is not present. Conversely, Pol δ-PCNA is the only enzyme capable of extending Okazaki fragments in the presence of Pols ε and α. We have shown earlier that Pol δ-PCNA is suppressed on the leading strand with CMG (Georgescu et al., 2014). We propose that CMG, the 11-subunit helicase, is responsible for one or both of these suppression mechanisms that spatially control polymerase occupancy at the fork.


Assuntos
DNA Helicases/genética , Replicação do DNA , DNA Fúngico/genética , Subunidades Proteicas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Sequência de Bases , DNA/genética , DNA/metabolismo , DNA Helicases/química , DNA Helicases/metabolismo , DNA Polimerase I/genética , DNA Polimerase I/metabolismo , DNA Polimerase II/genética , DNA Polimerase II/metabolismo , DNA Polimerase beta/genética , DNA Polimerase beta/metabolismo , DNA Fúngico/química , DNA Fúngico/metabolismo , Expressão Gênica , Dados de Sequência Molecular , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Proc Natl Acad Sci U S A ; 111(43): 15390-5, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25313033

RESUMO

DNA replication in eukaryotes is asymmetric, with separate DNA polymerases (Pol) dedicated to bulk synthesis of the leading and lagging strands. Pol α/primase initiates primers on both strands that are extended by Pol ε on the leading strand and by Pol δ on the lagging strand. The CMG (Cdc45-MCM-GINS) helicase surrounds the leading strand and is proposed to recruit Pol ε for leading-strand synthesis, but to date a direct interaction between CMG and Pol ε has not been demonstrated. While purifying CMG helicase overexpressed in yeast, we detected a functional complex between CMG and native Pol ε. Using pure CMG and Pol ε, we reconstituted a stable 15-subunit CMG-Pol ε complex and showed that it is a functional polymerase-helicase on a model replication fork in vitro. On its own, the Pol2 catalytic subunit of Pol ε is inefficient in CMG-dependent replication, but addition of the Dpb2 protein subunit of Pol ε, known to bind the Psf1 protein subunit of CMG, allows stable synthesis with CMG. Dpb2 does not affect Pol δ function with CMG, and thus we propose that the connection between Dpb2 and CMG helps to stabilize Pol ε on the leading strand as part of a 15-subunit leading-strand holoenzyme we refer to as CMGE. Direct binding between Pol ε and CMG provides an explanation for specific targeting of Pol ε to the leading strand and provides clear mechanistic evidence for how strand asymmetry is maintained in eukaryotes.


Assuntos
DNA Polimerase II/metabolismo , Replicação do DNA , Holoenzimas/metabolismo , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/enzimologia , Cromatografia em Gel , DNA Helicases/isolamento & purificação , DNA Helicases/metabolismo , DNA Circular/metabolismo , Modelos Biológicos , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , Fatores de Tempo
20.
Nat Struct Mol Biol ; 21(8): 664-70, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24997598

RESUMO

Eukaryotes use distinct polymerases for leading- and lagging-strand replication, but how they target their respective strands is uncertain. We reconstituted Saccharomyces cerevisiae replication forks and found that CMG helicase selects polymerase (Pol) ɛ to the exclusion of Pol δ on the leading strand. Even if Pol δ assembles on the leading strand, Pol ɛ rapidly replaces it. Pol δ-PCNA is distributive with CMG, in contrast to its high stability on primed ssDNA. Hence CMG will not stabilize Pol δ, instead leaving the leading strand accessible for Pol ɛ and stabilizing Pol ɛ. Comparison of Pol ɛ and Pol δ on a lagging-strand model DNA reveals the opposite. Pol δ dominates over excess Pol ɛ on PCNA-primed ssDNA. Thus, PCNA strongly favors Pol δ over Pol ɛ on the lagging strand, but CMG over-rides and flips this balance in favor of Pol ɛ on the leading strand.


Assuntos
DNA Polimerase III/química , DNA Polimerase II/química , Replicação do DNA , Saccharomyces cerevisiae/enzimologia , DNA Fúngico/biossíntese , DNA Fúngico/química , DNA Fúngico/genética , Proteínas de Ligação a DNA/química , Cinética , Proteínas de Manutenção de Minicromossomo/química , Proteínas Nucleares/química , Antígeno Nuclear de Célula em Proliferação/química , Proteína de Replicação A/química , Ribonucleoproteína Nuclear Pequena U4-U6/química , Ribonucleoproteína Nuclear Pequena U5/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...