Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38005429

RESUMO

The production of long-term landslide maps (LAM) holds crucial importance in estimating landslide activity, vegetation disturbance, and regional stability. However, the availability of LAMs remains limited in many regions, despite the application of various machine-learning methods, deep-learning (DL) models, and ensemble strategies in landslide detection. While transfer learning is considered an effective approach to tackle this challenge, there has been limited exploration and comparison of the temporal transferability of state-of-the-art deep-learning models in the context of LAM production, leaving a significant gap in the research. In this study, an extensive series of tests was conducted to evaluate the temporal transferability of typical semantic segmentation models, specifically U-Net, U-Net 3+, and TransU-Net, using a 10-year landslide-inventory dataset located near the epicenter of the Wenchuan earthquake. The experiment results disclose the feasibility and limitations of implementing transfer-learning methods for LAM production, particularly when leveraging the power of U-Net 3+. Furthermore, following an assessment of the effects of varying data volumes, patch sizes, and time intervals, this study recommends appropriate settings for LAM production, emphasizing the balance between efficiency and production performance. The findings from this study can serve as a valuable reference for devising an efficient and reliable strategy for large-scale LAM production in landslide-prone regions.

2.
Sensors (Basel) ; 22(16)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36015993

RESUMO

Landslides have been frequently occurring in the high mountainous areas in China and poses serious threats to peoples' lives and property, economic development, and national security. Detecting and monitoring quiescent or active landslides is important for predicting risks and mitigating losses. However, traditional ground survey methods, such as field investigation, GNSS, and total stations, are only suitable for field investigation at a specific site rather than identifying landslides over a large area, as they are expensive, time-consuming, and laborious. In this study, the feasibility of using SBAS-InSAR to detect landslides in the high mountainous areas along the Yunnan Myanmar border was tested first, with fifty-four IW mode Sentinel-1A ascending scenes from 12 January 2019 to 8 December 2020. Next, the Yolo deep-learning model with Gaofen-2 images captured on 5 December 2020 was tested. Finally, the two techniques were combined to achieve better performance, given each of them has intrinsic limitations on landslide detection. The experiment indicated that the combination could improve the match rate between detection results and references, which implied that the performance of landslide detection can be improved with the fusion of time series SAR images and optical images.


Assuntos
Deslizamentos de Terra , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...